
 MICROCOMPUTERS AND MUSIC

 by Gary E. Wittlich, John W. Schaffer, and Larry R. Babb

 Englewood Cliffs, Prentice-Hall, 1986

 Reviewed by

 Alexander R. Brinkman

 Considering the proliferation of microcomputers in all

 aspects of the educational experience, it is not surprising that books

 specializing in specific subject areas should begin to appear.

 Although the literature on computer music composition and synthesis

 has seen a great deal of activity during recent years, the present text

 is one of the first intended as an introduction to general music

 processing on microcomputers. The primary objective of the authors

 is "to demonstrate how microcomputers can be used effectively in

 the solution of problems of interest to musicians," using three

 commonly available microcomputers - the Apple II family, the

 Commodore 64, and the IBM PC. The text specifically avoids the

 area of music composition, and although some applications in music

 theory are explored, the primary emphasis is on techniques that are

 useful in computer assisted instruction (CAI) in music.

 The text uses the BASIC computer language, and presumes

 that the reader already has at least an elementary knowledge of

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 142

 BASIC programming, control structures, and subroutines, or is

 willing to obtain these from other sources. More advanced

 techniques - string functions, programmer defined functions, and

 arrays - are defined in the text and illustrated by programming

 examples, as are the use of graphic and sound producing functions.

 The book is organized into seven chapters and five appendices:

 1. Introduction to Top-Down Design and Structured Programming
 2. Data Representation and Manipulation
 3. Data Structures for Music Applications
 4. Structured Programming for Computer-Assisted Instruction Lessons
 5. Microcomputer Graphics
 6. Computer-Generated Sound
 7. Top-Down Design Examples

 Appendix A: A Guide to Basic
 Appendix B: An Apple Shape Maker
 Appendix C: Memory Problems on the Apple II
 Appendix D: Machine Codes for Screen Scroller Portion of

 Melody Maker Programs
 Appendix E: Solutions to Exercises

 The first chapter is a cogent discussion of the process of

 designing well-structured programs. Throughout the book the

 authors recommend and use a style of programming called structured

 programming, a technique that includes top-down design, stepwise

 refinement, and encoding the program in well-defined modules, each

 of which performs a specific task and has only one point of entry and

 one exit. These techniques lead to clearer program structure, and the

 resulting programs are generally easier to debug, maintain, and

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 143

 extend. Certain computer languages, such as Pascal, were designed

 with these objectives in mind. Although BASIC is not one of these

 and lacks many features that facilitate the technique, the authors do

 an excellent job of implementing these goals. They present a

 systematic approach for developing programs that includes a clear

 statement of the problem in English, the use of pseudo-code and

 flowcharting, solving large problems by breaking them down into

 successively smaller steps, and the use of subroutines to implement

 modules. The authors also use indentation, blank lines, and well-

 delineated comments to help clarify program structure.

 Chapter 2 introduces several music representations that are

 useful for data entry and storage. The authors give concise

 summaries of DARMS and MUSTRAN, the two most complete and

 widely used alphanumeric music encoding schemes. In each case the

 subset described is sufficient for encoding simple single-line

 (melodic) excerpts, and the chapter includes references to sources

 with more complete information. Presumably the section on

 DARMS is included for information only, since this excellent code is

 not used elsewhere in the book.1 These codes are followed by a

 coding scheme more typical of microcomputer applications, which

 1 There are some errors in the DARMS code description. For example, the
 duration and the optional dot, as stated in the book. Also, the double barline
 (II) is encoded '//'. The symbol '!/' signifies a heavy (wider) barline, thus
 the double bar at the end of a piece (II) would be encoded '/!/'.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 144

 the authors refer to as LTTR/ACC/CXT/LNTH to indicate the

 encoding order. The code uses note names [C,D,E,F,G,A,B],

 accidentals [+ (sharp), ++ (double sharp), - (flat), - (double-flat)],

 and octave number [0-8]. Durations are encoded using proportional

 integer values (12 = quarter note, 6 = eighth note, 4 = eighth-note

 triplet, etc.). This code and derivatives are heavily used in the rest

 of the book. This chapter also includes a description of BASIC

 string functions and illustrates their use in parsing

 LTTR/ACC/OCT/LNTH code. The last part of the chapter presents

 numeric systems for representing pitch, and illustrates various

 musical operations using them. The systems used are pitch class

 integers (0-11 in a modulo 12 system), diatonic pitch classes (0-6 in

 a modulo 7 system), and a system that combines chromatic and

 diatonic pcs and octave numbers in a manner that allows arithmetic

 manipulation of pitch data but retains precise spelling and registral

 information.2

 Chapter 3 discusses data structures for music applications.

 The authors discuss arrays in one and two dimensions, and illustrate

 their use with a number of musical problems (e.g., melodic

 imbrication, note counting, and 12-tone matrices). Other useful

 techniques such as indirect reference of array elements and the use of

 2 This system was described by the present author in a recent article. See
 Alexander R. Brinkman, "A Binomial Representaton of Pitch for Computer
 Processing of Musical Data," Music Theory Spectrum 8 (1986): 44-57.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 145

 arrays as look-up tables and storage structures are also introduced

 and illustrated in an informal but clear manner. The discussion of

 arrays culminates with a procedure for calculating prime forms of pc

 sets. The algorithm used is essentially Allen Forte's, with an

 interesting computational twist.3

 The latter portion of Chapter 3 presents simple linked lists,

 which are preferable to arrays in some applications because of the

 ease with which new items can be inserted or deleted. Since BASIC

 does not provide a pointer data type, the authors show how to

 implement linked lists using arrays. By way of illustration, they

 implement a linked list of notes using a matrix (NTE), in which each

 row constitutes a node in the list. Each column in the matrix

 represents a separate field for representing one item of information in

 the nodes. As an aid to clarity in the program code, the columns are

 referenced by mnemonic variables that have been assigned integer

 values, e.g., LTTR (letter name), ACC (accidental), OCT (octave),

 LNTH (length), LL (left link), RL (right link), etc. Thus, if the

 variable CRNT is the index (row number) of the current node, the

 various attributes of each note are referenced as NTE(CRNTJ^TTR),

 3 See Allen Forte, The Structure of Atonal Music, (New Haven: Yale
 University Press, 1973). The modified algorithm given in the book is as fol-
 lows: after sorting the set, all circular permutations with the smallest span
 are extracted and transposed to zero. For each of these, the intervals are
 compared symmetrically from both ends, and if the smaller interval is on the
 right, the set is inverted by reversing the interval sequence. The prime form
 is the set for which the sum of the resulting integers has the least value.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 146

 NTE(CRNT,OCT), etc. The next node in the list is obtained by

 CRNT = NTE(CRNTJRL). This implementation is possible because

 all of the values are stored in the matrix using the integer

 representations introduced in Chapter 2. A logical extension that

 would allow different data types in each field would be to use

 parallel one-dimensional arrays to represent the fields. Thus, the

 fields would be referenced LTTR(CRNT), OCT(CRNT), etc., and the

 next node obtained by CRNT = RL(CRNT).

 Chapter 4 introduces design principles for computer-assisted

 instruction and reinforces the concepts introduced in the first chapter

 by working through the design of a CAI drill program using the top-

 down approach. The program is designed to drill interval spelling.

 The authors present two algorithms based on the circle of fifths that

 can be used to generate intervals or chords. This chapter also

 includes the use of sequential text files for permanent storage of data

 generated by programs.

 The first four chapters are general, i.e., they do not depend

 on any particular microcomputer. Chapters 5 and 6 explore

 microcomputer graphics and sound production. Since

 implementation of these techniques differs from computer to

 computer, and even among different BASIC interpreters on the same

 computer, much of the discussion must necessarily deal with

 characteristics of specific systems.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 147

 Chapter 5 begins with a good overview of microcomputer

 graphics, then moves on to specific music problems such as drawing

 staves, defining music symbols (clefs, notes, etc.), and positioning

 them on the computer screen. Whenever possible the discussion is

 generalized; details necessary for implementation on specific

 computers are set off in grey-tone highlight boxes. The authors

 cover two different methods of input: alphanumeric music codes, and

 cursor-driven input in which the user uses arrow keys to choose

 items from a menu. The culmination of the chapter is a design for a

 "music editor" that utilizes the linked list implementation from

 Chapter 3. As music code is entered or changed, the notation

 appears or is updated on the computer screen. The editor allows for

 insertion or deletion of notes at any point in the melody, as well as

 for changing values (duration, accidentals, etc). It also scrolls the

 graphics left or right to accommodate writing a melody longer than

 one screen. The text discusses and lists each required procedure.

 Chapter 6 deals with sound production on microcomputers,

 using the internal tone generators and BASIC commands that control

 them. The chapter begins with an overview of simple acoustic

 principles, and then shows how tones can be generated on

 microcomputers. Specific examples are given for each of the three

 target computers used in the text. The chapter concludes with a

 program for playing melodies that uses many techniques presented

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 148

 earlier in the text and is implemented for each of the target

 machines.

 The final chapter contains a series of complete programs

 which incorporate most of the routines and techniques developed

 throughout the text. This chapter also reviews the suggested steps

 for algorithm development and applies them to the programs

 presented. The programs are complete implementations of the

 designs covered in Chapters 3 through 6 - an interval drill CAI

 program; a music editor program for writing, editing, and storing

 melodies; and a melodic analysis program. The latter is a menu-

 driven program that can calculate interval succession, melodic range,

 conjunctivity index,4 and pitch inventory (note counts), as well as

 search for imbricated melodic patterns. The programs are designed

 to work together, i.e., melodies created and saved with the music

 editor can be played by the melody player (Chapter 6) or analyzed

 by the melodic analysis program. Complete program listings are

 included, with appropriate variations for each of the target

 computers.

 The Appendices provide additional useful information.

 Appendix A is a summary of BASIC commands and syntax.

 Appendix B is a complete "shape maker" program for designing

 graphic symbols for the Apple II family of computers. In addition to

 4 Their conjunctivity index represents the relative amount of disjunct vs.
 conjunct motion in a melodic line.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 149

 the program listing, there are instructions for loading and initializing

 the shape table so that it can be utilized by user-written programs.

 Appendix C addresses memory problems on the Apple II. Because

 of the way high-resolution graphics are implemented on this system,

 BASIC programs cannot generally make use of much of the available

 memory. The authors present a solution to this problem and a

 program to implement it. Appendix D contains assembly language

 and machine code segments to implement the routines that scroll the

 graphics screen left and right in programs presented in the text.

 Versions are included for the Apple and Commodore computers

 (they are not required by the IBM PC). Appendix E contains

 solutions or partial solutions to most of the exercises in the text.

 The question of audience for a book such as this is an

 interesting one. In the preface the authors target three groups:

 musicians who wish to use the microcomputer for such tasks as data

 management and analysis, students in a course using the book as a

 text, and professional and amateur musicians who are interested in

 applications of the computer to music and would like to learn

 something about them.

 The book is well suited as a textbook for an introductory

 course in microcomputer applications in music. There are many

 exercises, which appear after each section of text Especially in the

 beginning, the emphasis is on making changes to routines that are

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 150

 shown in the text. It would be nice if more exercises called for

 applying creatively the program development techniques suggested in

 the text. The fact that answers are given to most exercises is useful

 to one who is teaching himself, but may necessitate designing

 additional assignments when the book is used as a text in a course.

 Exercises might also have provided an opportunity to

 explore more advanced techniques that are absent from the text. One

 example is the binary representation of pc sets, which can be

 implemented with integers. In this representation, a set of n unique

 pitch-class integers P, , 1 < z < /i is represented by a single integer S,

 which is the sum of 2 ' for each pitch class, P, :

 n p

 S = I 2 '

 This could be implemented easily in BASIC using an array of pc

 integers, PC, the exponentiation operator (T), and a FOR loop:

 100 S = 0 : REM set number

 110 FOR I = 1 TO N : REM for n pcs
 120 S = S + 2 T PC(I) : REM add 2Tpc
 130 NEXT I

 Since this algorithm yields a unique integer value for each possible

 pc set, its use would improve efficiency in problems such asr finding

 invariant subsets in a twelve-tone matrix (exercise 3.5.2); it also

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 151

 suggests a more elegant prime form algorithm.5

 Perhaps because of the wide intended audience, the authors

 have adopted a fairly informal style, and have avoided technical

 explanations both in the areas of music and computer science. Some

 readers will object to a lack of preciseness in use of terms generally

 used in specific ways. For example, consider the following passage

 (page 52):

 Much analysis of twentieth-century music deals with sets of notes,
 that is, collections of notes in which there are no duplicates, such
 as the set (C,E,G). [Emphasis theirs]

 The program that illustrates the concept uses as input a MUSTRAN

 string representing a melody from a Chopin Prelude. The program

 extracts a set, also in the form of MUSTRAN code, that represents

 the following: quarter note E4, dotted-eighth C#5, sixteenth D5,

 quarter B4, half B4, quarter F#5, dotted eighth D#5, etc. The

 implicit definition is of a set of note-classes with class membership

 defined by spelling, register, and duration. The example might be

 more useful from the music-theoretic viewpoint, and perhaps more

 interesting as a program, if one property of each note, e.g., pitch

 class, had been extracted from the code.

 The authors' efforts to make abstract concepts accessible to

 the inexperienced are occasionally misleading. After correctly

 5 See Daniel Starr, "Sets, Invariance and Partitions," Journal of Music
 Theory 22/1 (197S): 1-42.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 152

 defining pitch class and modulo 12 arithmetic operations, they

 illustrate with the following (page 33):

 Finally, transposition can be applied to an inverted interval or note
 name. In the mod 12 system, a C major triad can be inverted to
 produce the F minor triad and be transposed up a major third to
 produce the A minor triad:

 C major triad: 0 4 7
 Invert mod 12: 0 8 5

 Transpose by 4: 4 0 9

 The following musical notation will help make transposed inver-
 sion easier to visualize:

 V i " I i i "
 _/V

 •Qy

 047 085 409

 Remember that inversion produces the contour mirror of the start-
 ing interval or chord, so that C E G is mirrored by C A- F, the
 latter of which is transposed to E C A in this example. [Italics
 mine]

 While explanations such as this are obviously meant to help the

 novice understand theoretical concepts, the association of contour

 with pitch class may well have the opposite effect.

 The fact that the book is geared toward three popular

 microcomputers makes it immediately useful to a large number of

 users. Users of other machines and other BASIC interpreters will

 still find the contents informative, although they will have to spend

 more time with technical manuals for their environment. However,

 targeting specific computers may make the book prone to

 obsolescence as the computers for which it was written become

 outmoded.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 153

 Finally, there is a great deal of literature on microcomputers,

 data structures, computer assisted instruction, and music theory. It

 would be helpful for many readers if more suggested readings and

 references were cited where appropriate. Suggestions such as "Our

 procedure is but one of a number of ways to find prime form, and

 we suggest that you check the recent literature on music theory for

 other possibilities" (page 61) will not be helpful to a large segment

 of the intended audience.

 The minor criticism in the previous paragraphs should not

 detract from the utility of this book, and may result from the

 terseness of the text, which packs a great deal of useful information

 into about 300 pages. The authors have managed to express difficult

 concepts in language that is almost always clear and concise.

 Microcomputers and Music is an excellent introduction to

 good programming style, using a language for which style and

 program structure have often been secondary considerations. In the

 preface, the authors defend BASIC on the grounds that it is widely

 available and many people already know how to use the language.

 They make the statement, "So long as programs are logically

 designed and well-structured, then the choice of a language becomes

 much less of an issue." In my classes in computer applications to

 music research, using Pascal and C, I have found that students who

 have learned programming in unstructured languages such as BASIC

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms



 154

 sometimes have more difficulty developing good programming style

 than students with no experience at all. However, I suspect that

 students who learn to program in BASIC using programming

 techniques such as those described in this book will find the

 transition to more powerful languages quite natural, and will discover

 that the new control statements, named subroutines, and user-defined

 data types allow them better to express the program structures that

 they are already using.

 Although this text is an excellent introduction to

 microcomputer applications in music, it must be considered in this

 light. The emphasis on graphics and simple sound production will

 not be particularly useful to serious researchers in music theory, and

 those who wish to write CAI applications for training professional

 musicians will need to master more sophisticated tone generators

 than those built into most popular microcomputers. While the

 emphasis on programming style and program structure are admirable

 in a text on programming in BASIC, the language, at least in the

 form presented in this text, is not an adequate medium for

 developing large systems and powerful programming tools. These

 applications are more easily constructed using languages that provide

 more flexible control structures, named subroutines (with symbolic

 arguments), separate compilation of modules into libraries that can

 be linked with other programs, user-defined data types, and other

 amenities of more powerful programming languages.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:26:19 UTC
All use subject to https://about.jstor.org/terms


	Contents
	[141]
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154

	Issue Table of Contents
	Intégral, Vol. 1 (1987), pp. 1-166
	Front Matter
	Motivic Repetition in Beethoven's Piano Sonata Op. 110 Part I: The First Movement [pp. 1-29]
	Brahms: Songs with Words and Songs without Words [pp. 31-56]
	Webern's "Variations for Piano", Op. 27: Musical Structure and the Performance Score [pp. 57-103]
	Music in Theory and Practice: A Behavioral View [pp. 105-125]
	The Larger View [pp. 127-140]
	Reviews
	Review: untitled [pp. 141-154]
	Review: untitled [pp. 155-165]

	Back Matter





