
 Conditions Under Which, in a Commutative
 GIS, Two 3-Element Sets Can Span the Same
 Assortment of GIS-Intervals; Notes on the

 Non-Commutative GIS In This Connection

 David Lewin

 Suppose A is a set of 3 pitches modulo the octave, using which
 we can span a just P5th, a just P4th, a just M3rd, a just m6th, a
 just m3rd and a just M6th. Suppose B is another such set. Can we
 conclude that B must be either a transposition or an inversion of
 A? Yes. Now suppose A is a set of three pitch classes from within
 a division of the octave into 51 equal units, and that if we use the
 members of A, we can span intervals of 9 units, 42 units, 21 units
 (in two different ways), and 30 units (also in two different ways).
 Suppose B is another such set. Can we conclude that B must be
 either a transposition or an inversion of A? Yes.

 The situation can be generalized. If A and B are 3-element sets
 within any commutative GIS, and if B has the same GIS-interval
 content as A, then B must be either a GIS-transposition or a GIS-
 inversion of A. Furthermore, in any commutative GIS, any set
 must have the same GIS-interval content as any of its GIS-
 transposed or GIS-inverted forms.

 In a non-commutative GIS, however, sets A and B may be
 related by GIS-transposition but have different GIS-interval
 contents. And in a non-commutative GIS, sets A and B may be
 related by GIS-inversion but have different GIS-interval contents.
 Finally, in a non-commutative GIS, 3-elemcnt sets A and B may
 have the same GIS-interval content without being related either
 by GIS-transposition, or by GIS-inversion, or by some "interval-
 preserving transformation" of the GIS.

 1. Setting the agenda.

 1.1 By a GISy I mean a Generalized Interval System in the sense
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 38 Integral

 in which I expounded the concept some years ago.1 A GIS
 contains objects, and formal "intervals" between them, with
 certain stipulations about the behavior of said objects and
 intervals. The stipulations allow us to generalize a variety of ideas
 about traditional intervals among pitches or pitch classes, to ideas
 about formal GIS-intervals.

 1.2 Among such ideas is the notion of tabulating the [GISJ-
 interval content of a finite set of GIS-objects. (We shall assume all
 things called "sets" in the sequel to be finite, even if the GIS at
 hand has infinitely many objects and intervals.) Formally, given
 a set A, its "[GIS] -interval content" is here defined to be a
 function f which tabulates the number of distinct ways in which
 each interval of the GIS system can be spanned within A. That is,
 for each interval i of the GIS, the function value f(i) is the number

 of different ways in which i can be spanned by members of A.2

 1.2.1 As an example, let us consider the traditional GIS of pitch
 classes and pc intervals, and let us consider the set A which
 comprises the pitch classes B, C, and F. We write A = {B,C,F}.
 The GIS-interval content of A is shown in table 1.

 * David Lewin, Generalized Musical Intervals and Transformations [hence-
 forth GMIT] (New Haven: Yale University Press, 1987).

 2I stress that the term "[ GIS] -interval content" is here being defined, in
 exactly the manner described, for the present context. I introduced the term
 "interval (lie) content," thus defined, in Journal of Music Theory All (April
 1960). My article (pages 98-101) was entitled, aThe Intervallic Content of a
 Collection of Notes, Intervallic Relations between a Collection of Notes and its

 Complement, an Application to Schoenberg's Hexachordal Pieces." The
 "interval (lie) content" of a set A of notes is there defined as my "interval
 function from A to itself," the "interval function from A to B" having been
 defined in an earlier article, "Intervallic Relations Between Two Collections of

 Notes" Journal of Music Theory 3/2 (November 1959), 298-301.
 While the 1960 article concerns itself only with the traditional GIS of
 "notes" (i.e. pes in the mod 12 universe), the concept of "interval function" is
 generalized in GMIT so as to apply to any formal GIS structure, and subjected
 in that book to intense study. (The interested reader can consult IFUNC in the
 Index of the book.) The term "interval (lie) content" is not generalized in
 GMITt though it could easily have been, as it is in the present article.
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 Table 1

 interval i: 01 23456789 1011
 value f(i): 3100012100 01

 Some comments are in order.

 (1) The top row of the table lists the twelve directed pc intervals
 of the GIS, numbered 0 through 11, rather than 6 "interval-
 classes" ("id" through "ic6").

 (2) Even though the value of f(-i) is the same as the value of
 f(i) on the table, the conceptual distinction between the values is
 significant: "f(l)=l" signifies that there is 1 way to span a
 directed interval of 1 using members of the set (namely, from B
 to C), while "f(ll)=l" signifies that there is 1 way to span a
 directed interval of 1 1 using members of the set (namely, from C
 toB).

 (3) "f(0) =3" signifies that there are three distinct ways in
 which the member objects of set A can span a unison, an interval
 Oof the GIS. "f(6) = 2" signifies that there are two distinct ways
 in which the member objects of set A can span a tritone, an
 interval 6 of the GIS - either from B to F or from F to B.

 These features of the GIS-interval content function distinguish
 it from Forte's "interval vector," which it otherwise resembles.3

 13 A GIS structure enables us to construct, for any set therein,
 the function of section (1.2), its formal "GIS-interval content."
 We can then ask: under what conditions can two different sets in

 ^Forte's interval vector, basically, counts types of 2-note subsets of set A, not

 ways of spanning intervals within set A. So it inspects 6 things (2-note set types),
 rather than 12 things (directed pc intervals). Forte's vector does not count
 unisons, which are not 2-note sets. His vector also counts one tritone-dyad (e.g.
 {B,F}), where the function of table 1 counts two ways of spanning a directed
 tritone-interval, either from B to F, or from F to B.

 Allen Forte defines and discusses his "interval vector" in The Structure of
 Atonal Music (New Haven: Yale University Press, 1973), 15#

 There is a substantial literature on generalizing Forte's "interval vector," as
 well as my "interval function." A later note will take the matter up.
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 a GIS have the same GIS-interval content? The present study
 answers that question definitively for sets of cardinality 3 in the
 most general GIS of the sort called "commutative." (The term
 will be defined formally later on in this paper.)

 1.4 In the traditional GIS of pitch classes and pitch-class intervals,
 the question just asked has been answered not just for sets of
 cardinality 3, but for sets of all cardinalities:
 (a) In that GIS, sets that are (GlS)-transpositions or (GIS)-
 inversions, each of the other, must have the same (GlS)-interval
 content.

 (b) In that GIS, some pairs of sets have the same (GlS)-interval
 content but are not related by (GlS)-transposition or (GIS)-
 inversion. Here, I shall call such pairs "GISZ-related. "*

 (c) In that GIS, there are no GISZ-related pairs of cardinality 3.
 (d) There are, however, GISZ-related pairs of cardinality 4, of

 cardinality 5, and so forth through cardinality 8. These GISZ-
 pairs have been tabulated.^

 Nfhe symbol "GISZ" was chosen to impress upon the reader the completely
 formal and absolutely specific character of the term in this context:
 GISZ-related sets (1) must be sets within a specified GIS, (2) must have the
 same formal GIS-interval content therein, and (3) must not be related therein

 either by formal GIS- transposition or by formal GIS-inversion. (Those
 transformations will be described presently.)

 In the traditional mod 12 GIS of pcs and directed pc intervals, it so happens
 that two sets (of any cardinality) are GISZ-related in the present sense if and
 only if they are "Z-relatedw in the sense of Allen Forte (The Structure of Atonal
 Music t 21-24). Forte's Z-relation has been generalized and extended in many
 ways. The GISZ construction is one particular way. Other generalizations and
 extensions are discussed in GMIT (103-122). Yet other important extensions
 have been explored by Robert Morris , the locus dassicus being his "Set Groups,
 Gomplementation, and Mappings among Pitch-Class Sets," Journal of Music
 Theory 26/1 (1982): 101-44.

 However, the point of the present paper is not to explore any other
 extensions- or even properties- of Forte's Z-relation. The point is rather to
 investigate aspects of the behavior of certain 3-element sets within a GIS.
 Hence, in speaking of the GISZ-relation, I have chosen a name that
 ostentatiously points to the presence and roles, in determining that relation, of
 a specified GIS, the GIS-interval content, GIS-transposition, and GIS-
 inversion.
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 1.5 As a result of (1.4c) above, another question arises: is the
 absence of GlSZ-related 3-element sets, in the traditional GIS

 under discussion, a special feature of that particular GIS? Or is it a
 necessary feature of any GIS whatsoever? In any GIS, we can
 always speak of formal GIS-transposition, formal GIS-inversion,
 and a formal GIS-interval-content function, so we can always
 inquire after 3-element sets that are "GISZ-related" in the
 particular sense defined by (1.4b) above. The present paper will
 show that the absence of GISZ-related 3-element sets is not a

 necessary feature of any GIS whatsoever, but that it is indeed a
 necessary feature of any commutative GIS.

 After we have shown that a commutative GIS cannot have

 GISZ-related 3-element sets, we shall discuss the problems that
 prevent us from generalizing our result to the non-commutative
 case.

 1.6 In order to carry out our agenda, we shall first review the
 basic definitions and characteristic features of a GIS.

 2. GIS structure; formalities.

 The following summary is taken from an earlier summary of
 mine. ^

 2.1 To manifest a Generalized Interval System we require:
 a family of formal objects s, t, ... ,
 a mathematical group of formal intervals i, j, ... , and

 a function int which assigns to any ordered pair <s,t> of
 objects a value int(s,t) within the group of intervals.

 If int(s,t) = i, one says that "i is the interval from s to t" within
 the GIS.

 ^Forte, The Structure of Atonal Music, Appendix 1, 179-81. A set that is
 Z-related to some other appears on this table with a Z in its look-up number,
 e.g. "5-Z17." As observed in note 4, our GISZ-relation coincides with his
 Z-relation in this particular GIS.

 "David Lewin, "Generalized Interval Systems for Babbitt's Lists, and for
 Schoenberg's String Trio," Music Theory Spectrum 17/1 (Spring 1995): 81-118.
 The material used here comes from pages 82-83 of that article.
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 We further require that for every three objects r, s, and t, the
 interval from r to s, when combined in the group with the interval

 from s to t, yields the interval from r to t. Symbolically, the
 requirement is that int(r,s)int(s,t) = int(r,t).
 Finally, we require that for each given object s and each given
 interval i, there be a unique object t which lies the given interval
 from the given object - i.e. which satisfies the equation int(s,t) = i.
 A GIS is called commutative or non-commutative depending on
 its group of intervals. That group is commutative when ij = ji for
 all intervals i and j, that is, when i-combined-with-j in the group
 yields the same result as does j-combined-with-i.
 The following synopsis is also taken from an earlier work of
 mine.7 It defines formal GIS-transposition for any GIS.

 2.2 In an abstract GIS, the operation of GIS-transposition by
 interval i is well-defined by the formula int(s,Ti(s)) = i. That is,
 for any object s, the Ti-transform of s is that unique object Ti(s)
 which lies the interval i from s. The GIS-transposition operations
 form a mathematical group which is anti-isomorphic to the group
 of intervals. Specifically, TiTj = T(ji); i.e. the i-GIS-transpose of
 the j-GIS-transpose (of any object) is the (ji)-GIS-transpose (of
 that object).
 When there is no danger of confusion, we shall write
 "transposition" for "GIS-transposition."
 An interval-preserving operation upon the objects of a GIS is a
 transformation P satisfying the formula int(P(s),P(t)) = int(s,t).
 That is, the interval between the P-transforms of any two objects
 is the same as the interval between the objects themselves. The
 interval-preserving operations form a group that can be proved
 isomorphic to the group of intervals.
 If (the group of intervals for) a GIS is commutative, the GIS-
 transpositions are exactly the interval-preserving operations: a
 transformation preserves intervals if and only if it is a GIS-
 transposition. If a GIS is non-commutative, there will be GIS-
 transpositions that do not preserve intervals, and there will be
 interval-preserving operations that are not GIS-transpositions.

 7Ibid.,page 100.
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 The following summary is taken from my earlier work as
 well. ** It defines formal GIS-inversion, for any GIS. (Some of the
 symbols are changed for present purposes.)

 2.3 In an abstract GIS, given any objects y and v (where v may
 be the same object as y), the operation I of y/v GIS-inversion is
 well-defined by the formula int(v,I(s)) = int( s,y). The formula
 expresses a pertinent intuition: given any object s, its inverted
 transform I(s) lies intervallically in relation to v, exactly as y lies
 intervallically in relation to s. Formally, given some object s, set i
 = int(s,y), and then find the unique object t which lies the interval
 i from v. The t so found satisfies the equation int(v,t) = i =
 int(s,y); t is taken to be the pertinent GIS-inverted image I(s) of s.
 When there is no danger of confusion, we shall write

 "inversion" for "GIS-inversion."

 An interval-reversing transformation on the objects of a GIS is a
 transformation R satisfying the formula int(R(s),R(t)) = int(t,s).
 That is, the interval between the R-transforms of any two objects
 is the same as the interval between the objects themselves in
 reverse order.

 If a GIS is commutative, the GIS-inversions are exactly
 the interval-reversing transformations: a transformation reverses
 intervals if and only if it is a GIS-inversion. If a GIS is non-
 commutative, GIS-inversions will not reverse intervals in all cases
 (for all s and t). Indeed, a non-commutative GIS possesses no
 interval-reversing transformations whatsoever.

 3. In any commutative GIS, (1.4abc) generalize completely.

 Throughout part 3, we shall assume a commutative GIS to be
 fixed.

 3.1 In dealing with a general commutative group, it is
 customary to use symbols associated with addition. Thus, in our
 commutative GIS, the interval i and the interval j combine to
 form the interval i + j. Since the group is commutative, i + j = j + i.

 SGMITy 51 and 58.
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 So the intervals j and i (in that order) combine to form the same
 sum-interval as do the intervals i and j (in that order). The group
 of intervals has a unique identity interval 0.
 The zero interval may be thought of as a generalized "unison"
 interval: it combines with any interval i to form that very interval

 i. Every interval i has a unique inverse interval, denoted "-i"; -i is
 that unique interval which combines with i to yield the identity 0.
 (Example in the traditional pitch-class GIS: -4 = 8, since if one
 proceeds by 4 pc semitones, and then proceeds further by 8 pc
 semitones, one traverses 0 pc semitones net.)

 3.2 We now proceed to show that (1.4a) generalizes for our
 commutative GIS. That is, in a commutative GIS, every GIS-
 transposed or GIS-inverted form of a given object-set has the same
 GIS'interval content as that given set.
 Proof: Let A be a set of distinct objects x, y, z, ... . Let T be a
 transposition-operation of the GIS. The GIS-transposed set T(A)
 = B then comprises the distinct objects T(x), T(y), T(z) ... .9
 Suppose the interval i is spanned between objects s and t of set
 A. Then, since GIS-transposition is interval-preserving in our
 commutative (!) GIS, the interval i will also be spanned between
 objects T(s) and T(t) of the transposed set T(A) = B. So the
 objects ofB span at least as many intervals of i> as do the objects of A
 itself

 But A is also a GIS-transposed form of B: A = T'(B), where T
 is the inverse transposition to T. By the argument of the
 preceding paragraph, applied to B and T'(B) = A, we conclude
 that the objects of A span at least as many intervals of i, as do the
 objects ofB.

 From the italicized observations in the preceding two
 paragraphs, one infers that the objects of B span exactly as many
 intervals of i as do the objects of A. This being the case for any
 sample interval i, we conclude that B has the same formal GIS-
 interval content, as does A.

 'The transposed objects will be distinct because T is "1-to-l and onto.**
 The formalities of that observation are proved on pages 46-47 of GMIT
 (§3.4.2).
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 If B = I(A) is a GIS-inverted form of A, the argument is almost
 the same. We need only observe that all inversion operations, in
 our commutative (!) GIS, are interval-reversing. Then the interval
 i will be spanned between objects s and t of set A, if and only if
 the interval i is spanned between objects I(t) and I(s) of set B.10
 The rest of the argument proceeds exactly as for GIS-
 transposition.

 3.3 We can now generalize (1.4b), in our general commutative
 GIS. That is, we can define two sets-of-objects to be GISZ-
 related, if they have the same GIS-interval content but are not
 GIS-transposed or GIS-inverted forms, each of the other. To be
 sure, we could always make this definition anyway, but the
 restriction, that GISZ-related sets should not be related by some
 T or I, makes sense here only in light of (3.2). 1J

 3.4 Now we are ready for the first substantial result, generalizing
 (1.4c): in any commutative (!) GIS, there are no GISZ-related sets
 of cardinality 3. That is to say, if two 3-element sets of a
 commutative GIS have the same GIS-interval function, they must
 be related by GIS-transposition or GIS-inversion.

 l^The demonstration, that inversion-transformations as defined are 1-to-l

 and onto, is sketched on page 51 of GMIT (§3.5.1).
 11 Once again let me point out to the reader that I am not proposing here to

 discuss Forte's Z-relation as such, nor any other of its generalizations. Nor am I

 proposing to discuss other generalizations of my "interval function** or IFUNC
 (or injection function, or canonical group, or...). I am proposing to discuss
 (finite) sets within (finite or infinite) GIS-structures, and in the future I am

 going to focus particularly on 3-element sets within GIS-structures. When I ask
 of sets A and B, if they are GISZ-related, I am supposing there is a well-defined
 GIS at hand (and not some more general transformational system, perhaps
 involving a "canonical group" of operations, or whatever). I am supposing that A
 and B are sets within that specified GIS. I am then asking only (1) and (2)
 following: (1) do A and B have the same formal GIS-interval content as defined
 in the present paper? (2) Are A and B formal GIS-transpositions (or later GIS-
 interval-preserving transformations) or formal GIS-inversions, each of the
 other? If the answer to (1) is yes, and the answer to (2) is no, then A and B are
 GISZ-related, by the definition of "GISZ." Otherwise A and B are not GISZ-
 related (by the same definition).
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 The result will show that (1.4c) was not just a special property
 of the traditional pitch-class GIS; it is rather a property necessarily
 enjoyed by any commutative GIS. (Later on, we shall show that it
 is not necessarily enjoyed even more generally, in a reasonable
 sense, by a general non-commutative GIS. But for the time being,
 we are restricting our attention to commutative GIS structures.)

 3.4.1 To prove the assertion of 3.4, we shall suppose 3-element
 sets A = {x, y, z} and B = {u, v, w} which have the same GIS-
 interval content; we will then prove the following assertion: there
 exists a GIS-transposition T, or a GIS-inversion I, such that B is
 the T-or-I transform of A.

 3.5.1 Theorem: the assertion of (3.4.1) is true if the 3-element
 set A = {x,y,z} spans some non-zero interval i in two different
 ways, and i + i = 0.
 (This would be the case, for example, in the traditional pitch-
 class GIS for the pcset {B,C,F}, which spans the interval i = 6
 from B to F, and also from F to B, with 6 + 6 = 0.)

 Reshuffling the labels x, y, and z as appropriate, we can assume
 that i is the interval from x to y.
 Now in any GIS, int(t,s) is the inverse of int(s,t).^ For the
 particular x and y under present consideration, then, the interval
 from y to x is -i, the inverse of i. And for our particular i here, i +
 i = 0; hence -i is i itself. So i is not only the interval from x to y, it

 is also the interval from y to x. We can then partially diagram the
 intervallic structure of A as in Figure 1 .

 Figure 1

 12GMIT, 26 (§2.3.2).
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 In the arrangement of Figure 1 the interval j, from y to z,
 cannot be the same interval as i. For i is the interval from y to x;
 i cannot also be the interval from y to z, since z is distinct from x.

 (Given y and the interval i, there is a unique element which lies
 the interval i from y; that unique element cannot be both x and
 z.)

 3-element set B = {u,v,w} is assumed by (3.4.1) to have the
 same GIS-interval content as set A, so set B spans the interval i in
 some way. By reshuffling the labels u, v, and w for the members
 of B, we can assume that the situation of Figure 2 obtains.

 Figure 2

 Now B, which has the same interval content as A, must span
 the interval j in some way, and j is not the same as i. Therefore
 element w of Figure 2 must be involved somehow in a spanning
 of j within B: either j = int(v,w) or j = int(u,w) or j = int(w,v) or j =
 int(w,u). We shall call these four alternatives "Case 1," "Case 2,"
 "Case 3," and "Case 4."

 Case 1: j = int(v,w). Figure 2 then assumes the aspect of Figure
 3.

 Figure 3
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 In the orderings of Figure 1 and Figure 3, we see that x-to-y-
 to-z proceeds via intervals i and j; u-to-v-to-w also proceeds by
 intervals i and j. It follows that the 3-element set B is a
 transposition of the 3-element set A. To see this, let n = int(x,u).
 Then int(y,v) = int(y,x) + int(x,u) + int(u,v) =i + n + i = i + i + n
 (since the GIS is commutative!) = 0 + n = n. In like fashion,
 int(z,w) = int(z,y) + int(y,v) + int(v,w) = -j + n + j = n (since the
 GIS is commutative). In sum, int(x,u) = n; int(y,v) = n, and
 int(z,w) = n. Thus set B is the n-transpose of set A. If Case 1
 obtains, theorem (3.5.1) is true.

 Case 2: j = int(u,w). We relabel the elements of B as uf, v1, and
 w, setting u' = v and v1 = u. Figure 2 then assumes the aspect of
 Figure 4.

 Figure 4

 In Figure 4, int(u',v) = int(v,u) = i, int(v',u') = int(u,u) = i, and
 int(v',w) = int(u,w) = j (by the supposition of Case 2).

 Just as we used Figures 1 and 3 earlier (in Case 1), to show that
 set B was transposition-by-n of set A, where n was int(x,u), so we
 can use Figures 1 and 4 now (in Case 2), to show that set B, in this
 case, is transposition-by-n1 of set A, where n1 is int(x,u') = int(x,v).
 If Case 2 obtains y theorem (3.5. 1) is true.

 Case 3: j = int(w,v). Then int(v,w) = -j. We can now recast
 Figure 2 in the form of Figure 5.

 Let I be the operation of y/v inversion. The defining formula
 of that operation, in (2.3) above, is int(v,I(s)) = int(s,y): for any
 sample object s, the inverted object I(s) lies the same interval
 from v as y lies from the sample object s.

 Take the sample s to be x. The formula then defines I(x) by
 the equation int(v,I(x)) = int(x,y). And int(x,y) is i (as we see on
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 Figure 5

 Figure 1). So int(v,I(x)) = i; I(x) is that unique object which lies
 the interval i from v. Inspecting Figure 5, we see that I(x) = u.

 Next, take the sample s of the formula to be y. The formula
 then defines I(y) by the equation int(v,I(y)) = int(y,y). And
 int(y,y) is 0, the unison interval. So int(v,I(y)) = 0; I(y) is that
 unique object which lies the unison interval from v. That is,
 Ky) = v.

 Next, take the sample s of the formula to be z. The formula
 then defines I(z) by the equation int(v,I(z)) = int(z,y). And
 int(z,y) is -j (as we see on Figure 1). So int(v,I(z)) = -j; I(z) is that
 unique object which lies the interval -j from v. Inspecting Figure
 5, we see that I(z) = w.

 We have seen: I(x) = u, I(y) = v, I(z) = w. Hence 3-element set
 B is the I-inversion of set A. If Case 3 obtains, theorem (3.5.1) is
 true.

 Case 4: j = int(w,u). As in Case 2, we exchange the roles of u
 and v by setting u' = v, v' = u. Case 4 then reduces to Case 3. B is
 the I-inversion of A, where I is the inversion that maps y to v1
 (that is, y to u).

 This finishes all four possible Cases, so theorem (3.5.1) is fully
 proved: If 3-element sets A and B, in a commutative (!) GIS, have
 the same GIS-interval content, and if set A contains an interval
 which is its own inverse interval, then sets A and B are transpositions

 or inversions, each of the other.

 3.5.2 Theorem: the assertion of (3.4.1) is true if the 3-element
 set A = {x,y,z} spans some interval i in two different ways, and i is
 not its own inverse.
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 (This would be the case, e.g., in the traditional pitch-class GIS
 for the pcset A = {C,D,E}: A spans the interval i = 2 in two
 different ways, and interval 2 is not its own inverse.)

 Shuffling labels as necessary for the objects of A = {x,y,z}, we
 can suppose that i = int(x,y). Then we do not have int(y,x) = i, for
 otherwise i would be its own inverse, contrary to present
 assumption. Since there is some other way of spanning i within A
 (other than from from-x-to-y), this other way must then
 somehow involve element z. That is, either int(x,z) = i, or int(y,z)
 = i, or int (z,x) = i, or int(z,y) = i.

 But int (x,z) = i is impossible: y is the unique element lying the
 interval i from x, and the element z is distinct from y. Likewise
 int(z,y) = i is impossible. If it were the case we would have
 int(y,z) = -i. But int(y,x) = -i, and z is distinct from x.
 So we must have either int(y,z) = i, or int(z,x) = i.
 Case 1: int(y,z) = i. We may then diagram the intervallic
 structure of set A as in Figure 6.

 Figure 6

 Case 2: int(z,x) = i. We may then diagram the intervallic
 structure of set A as in Figure 7.

 Figure 7

 Setting x = z, y = x, and z = y, we can recast Figure 7 in the
 form of Figure 8.
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 Figure 8

 So, by shuffling the labels for the elements of set A, we may
 assume the configuration of Figure 6.

 Since 3-element set B = {u,v,w} has the same interval content as

 set A, we may reshuffle the labels for its elements in just the same

 way, and suppose the configuration of Figure 9.

 Figure 9

 Using Figures 6 and 9, we can then show that set B is the n-
 transpose of set A, where n is the interval from x to u. This
 finishes the proof for theorem (3.5.2). We have proved: if 3-
 element sets A and B, in a commutative (!) GIS, have the same GIS-

 interval content, and if set A spans in two different ways an interval i
 which is not its own inverse interval, then sets A and B are

 transpositions or inversions, each of the other.

 3.5.3 Theorem: the assertion of (3.4.1) is true if the 3-element
 set A= {x,y,z} spans no non-zero interval i in two different ways,
 so that the six non-zero intervals of set A are distinct.

 (This would be the case, e.g., in the traditional pitch-class GIS
 for the pcset A = {C, D, F}: A spans one each of the six distinct
 intervals i = 2, 3, 5, 7, 9, and 10.)

 For the set A, we may suppose the configuration of Figure 10,
 where the intervals i and j, by supposition, are different.
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 Figure 10

 Since interval i is spanned in some way by the member
 elements of 3-element set B = {u,v,w}, we may reshuffle the labels
 for those elements as necessary, and suppose that i is the interval
 from u to v, as in Figure 1 1 .

 Figure 11

 Minus-i appears on the figure as the interval from v to u. By
 supposition, the intervals i, -i, and j are all distinct. Now interval j
 is spanned in some way by member elements of the 3-element set
 B = {u,v,w}, and interval j (being distinct from i and from -i) is
 not spanned from u to v, nor from v to u. Hence one of the
 elements involved in spanning j is w. Thus either j = int(v,w), or
 j = int(w,u), or j = int(w,v), or j = int(u,w). We go through the
 four cases in turn.

 Case 1: j = int(v,w). The situation of Figure 12 obtains.

 Figure 12

This content downloaded from 128.151.124.135 on Fri, 15 Mar 2019 19:04:14 UTC
All use subject to https://about.jstor.org/terms



 3-Element Sets in a GIS 53

 As in (3.5.1) earlier for the analogous case, we consider
 transposition T by the interval n that extends from x to u. Using
 figures 10 and 12, we infer that int(y,v) = int(y,x) + int(x,u) +
 int(u,v) = -i + n + i = n (since the GIS is commutative). Following
 that, we infer int(z,w) = int(z,y) + int(y,v) + int(v,w) = -j + n + j =
 n (since the GIS is commutative). So we have int(x,u) = n, int(y,v)
 = n, and int(z,w) = n. u = Tn(x), v = Tn(y), and v = Tn(z); 3-
 element set B is the Tn-transpose of 3-element set A. In Case 1,
 theorem (3.5.3) is proved.
 Case 2: j = int(w,u). The situation of Figure 13 obtains.

 Figure 13

 Let I be the operation of y/u inversion. The defining formula
 of that operation, as in (2.3) above, is int(u,I(s)) = int(s,y): for any
 sample object s, the inverted object I(s) lies the same interval
 from u, as y lies from the sample object s.

 Taking our sample s to be y, we have int(u,I(y)) = int(y,y), the
 identity ("unison") interval. So I(y) lies a "unison" from u, and u
 is the I-inversion of y.

 Taking our sample s to be x, the formula tells us that
 int(u,I(x)) = int(x,y). Inspecting Figure 10, we see that int(x,y) =
 i. So I(x) lies the interval i from u; inspecting Figure 13 we see
 that I(x) = v.

 Taking our sample x to be z, the formula tells us that
 int(u,I(z)) = int(z,y). Figure 10 tells us that int(z,y) = -j. So I(z)
 lies the interval -j from u; inspecting Figure 13, we see that I(z) =
 w.

 In sum: I(x) = v, I(y) = u, and I(z) = w. Thus 3-element set B is
 the I-inversion of 3-element set A. In Case 2, theorem (3.5.3) is

 proved.

This content downloaded from 128.151.124.135 on Fri, 15 Mar 2019 19:04:14 UTC
All use subject to https://about.jstor.org/terms



 54 Integral

 Case 3: j = int(w,v). We shall show that this case cannot occur
 under present assumptions, in particular the assumption that our
 GIS is commutative (!). If the case did occur, it would entail the

 set-up of Figure 14.

 Figure 14

 From Figure 10, we can deduce all six non-zero intervals of set
 A. They are namely i, - i, j, - j, i + j, and - j - i.^ By an assumption
 of (3.5.3), these six intervals are distinct. Analogous inspection of
 Figure 14 yields the six distinct non-zero intervals of set B: they
 are i,-i, j, -j, j - i, and i -j.

 Since sets A and B are assumed to have the same interval

 content, the interval i + j of set A must be some interval of set B,
 whose distinct non-zero intervals are i, - i, j, - j, j - i, and i - j. The
 interval i + j of set A cannot be i, -i, j, or -j. (i, -i, j, and -j are
 intervals of A presumed by (3.5.3) to be distinct from the interval
 i + j of set A). Hence, inspecting the list of intervals for B, we see
 that, since i + j cannot be i, - i, j, or - j, interval i + j must be either
 j-iori-j.

 If i + j = j - i, then we can cancel the j's in the equation to
 obtain i = -i. But that is contrary to the assumption of (3.5.3).^

 ^Inspecting Figure 10, we can see that i is spanned from x to y, -i from y to
 x, j from y to z, -j from z to y, i + j from x to z, and -j -i from z to x.

 i4This part of the proof will not go through in a wow-commutative GIS. To
 see this, we shall work out the cancellation process in more detail. Knowing
 that i + j = j - i here, we wish to "cancel the j's in the equation to obtain i = -i."
 To do this, we subtract j from the right on both sides of the known equation.
 That is, given i + j = j - i, we infer that (i + j) - j = (j - i) - j. Hence (redrawing
 the parentheses, which is okay in any group) we infer that i + (j - j) = j - i - j;
 and thence we infer that i = j - i - j. In our commutative GIS, we havej - i = -i +
 j, so we can infer that i = (j - i) - j = (-i + j) - j = -i + (j - j) = -i. The inference

This content downloaded from 128.151.124.135 on Fri, 15 Mar 2019 19:04:14 UTC
All use subject to https://about.jstor.org/terms



 3-Element Sets in a GIS 55

 Likewise, if i + j = i - j, we can infer j = -j. But that is contrary to
 the assumption of (3.5.3).
 Thus the supposition of Case 3 leads to a contradiction. Case 3

 cannot happen.
 In similar fashion, we show that Case 4 cannot happen-, it is not

 the case that j = int(u,w).^
 Therefore, either Case 1 or Case 2 must obtain. 3-element set

 B is accordingly a GIS-transposition or a GIS-inversion of set A. If
 3-element sets A and B, in a commutative (!) GIS, have the same

 GIS-interval content, and if set A spans no non-zero interval in two

 different ways, then sets A and B are transpositions or inversions, each

 of the other.
 (3.5.1), (3.5.2), and (3.5.3) exhaust all possible cases as regards

 the interval content of the 3-element set A = {x,y,z}. Accordingly
 the assertion of (3.4.1) is now established in any of those cases.
 And so the assertion of (3.4) is established: in any com-

 mutative (!) GIS, there are no GISZ-related sets of cardinality 3.
 That is to say, if two 3-element sets of a commutative GIS have the
 same GIS-interval function, they must be related by GIS-
 transposition or GIS-inversion.
 We also showed in (3.1) that in any commutative (!) GIS, GIS-

 transposed or GIS-inverted sets must share the same GIS-interval
 content. So the entire agenda promised by the title of part 3 is
 now accomplished: in any commutative GIS, (lAabc) generalize
 completely.

 4. Discussion of the non-commutative case.

 4.1.1 In a non-commutative group, it is conventional to use
 symbolic multiplication as the group combination. The identity
 element of the group is conventionally denoted by the letter e:
 ei = ie = i for every group member i. The inverse element of i

 that i = -i is a crucial step in the present proof. But, in a «0H-commutative GIS,
 we cannot arrive at that inference, because it is not necessarily the case that j - i
 is equal to -i + j.

 ^Again, we lean heavily here on the presumption that our GIS is
 commutative.
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 within the group is conventionally denoted as "i-inverse," written
 as i with the superscript minus-one, thus: i~\ So ii"1 = i~!i = e.

 4.1.2 It will be useful to note the following: any group G can be
 used as the family of formal objects for a GIS, if we take G itself
 as a group of formal intervals, and define int(s,t) to be s~!t. We
 have (r'sXs^t) = r!t; thus int(r,s)int(s,t) = int(r,t), and the first
 requirement of (2.1) is satisfied.
 The second requirement of (2.1) is also satisfied: given an
 object s (in G) and an interval i (in G), suppose that t satisfies the
 equation int(s,t) = i. That is, suppose that s~'t = i. We can multiply
 both sides of that equation on the left by s, and infer that t = si.
 And in fact t = si does satisfy the equation: s-1si = i. So t is a
 unique element of the GIS satisfying int(s,t) = i. 16

 4.1.3 In the GIS of (4.1.2), GIS-transposition-by-x is given by
 the formula T(s) = sx.
 The elements x of the group can also be used to define the
 interval-preserving transformations of the group: a typical
 interval-preserving operation is given by the formula P(s) = xs.

 A typical GIS-inversion operation of the GIS is given by the
 formula I(s) = xs"!y, where x and y are elements of the group.17
 (4.2) following sets down, for convenient reference, the
 generalization of (1.4abc) which we have just seen is the case in
 any commutative GIS:

 4.2 (a) In any commutative GIS, sets that are GIS-transpositions
 or GIS-inversions, each of the other, must have the same GIS-
 interval content.

 1()In light of (4.1.2), we can regard the mechanics of GIS theory as a pan of
 traditional mathematical group theory. But as a model for musical systems, a
 formal GIS does well to separate the role of its objects (like pitch classes), from
 the role of its intervals (like pc intervals). The objects do not exhibit algebraic
 behavior in themselves; the intervals do.
 I discuss related matters in GMIT> 31-32.

 ''Relevant material will be found in GMIT, 47-52
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 (b) In any commutative GIS, some pairs of sets may have the
 same GIS-interval content without being related by GIS-
 transposition or GIS-inversion. Such pairs are here being called
 "GISZ-related."

 (c) In any commutative GIS, there are no GISZ-related pairs
 of cardinality 3. Any 3-element set is thus completely
 determined, up to GIS-transposition and GIS-inversion, by its
 GIS-interval content.

 4.3.1 In trying to generalize (4.2) to a non-commutative GIS,
 our first problem is that (4.2a) need no longer be the case. As
 noted in the third paragraph of (2.2) above, there will be at least
 one GIS-transposition operation T that does not preserve
 intervals, so we cannot conclude in all cases that a set A must have
 the same interval content as the set B = T(A). 18

 4.3.2 I will give here, in fact, a specific example of a GIS, a (2-
 element) set A, and a (2-element) set B, such that set B is a GIS-
 transposition of set A, but does not have the same GIS-interval
 content as A. Readers willing to take this on faith can move ahead
 to (4.4.1).

 We take as the members of a group G the six elements e
 (identity), a, a2, b, ab, and a2b, subject to the requirements that a3
 = e, b2 = e, ba = a2b, and ba2 = ab. The "multiplication table"
 shown in Table 2 confirms that this is a group; the product of any
 two elements is another of the same six elements.

 Table 2

 e a a2 b ab a2b

 c c a a2 b ab a2b

 a a a2 c ab a2b b

 a2 a2 c a a2b b ab

 b b a2b ab c a2 a

 ab ab b a2b a e a2

 a2b a2b ab b a2 a e

 ^We can review in particular how the proof of (3.2) relied explicitly upon
 our assumption that the GIS under consideration there was commutative.
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 We consider G to be a GIS in the manner of (4.1.2) above. We
 take as "set A" in this GIS the two-element family comprising
 objects x = a and y = b.
 We take as transposition T the operation of GIS-transposition
 by interval a. The operation is defined (as in (4.1.3) above) by the
 formula T(s) = sa.
 The set B = T(A) then comprises the two objects u = T(a) = aa
 = a2, and v = T(b) =ba=a2b.
 We compute the two non-identity intervals of set A: int(x,y) =
 x~*y = a-1b = a2b; int(y,x) is the inverse interval to int(x,y), the
 inverse of a2b, which is ba = a2b itself. Thus the two non-identity
 intervals of set A are both a b.

 We compute the two non-identity intervals of set B: int(u,v) =
 u~V = (a2)-1b = ab; int(v,u) is the inverse interval to int(u,v), the
 inverse of ab, which is ba2 = ab itself. Thus the two non-identity
 intervals of set B are both ab.

 In sum, B is a transposition of A, but B (whose intervals are e,
 e, ab, and ab) does not have the same interval content as A (whose
 intervals are e, e, a2b, and a2b).

 4.3.3 We can remove the problem just discussed by considering
 interval-preserving transformations rather than GIS-transpositions.

 In a commutative GIS, the two sorts of operations are exactly the
 same. And in any non-commutative GIS, if P is an interval-
 preserving transformation and set B is the P-transform of set A,
 then B must have the same interval content as A.1^

 Substituting interval-preserving transformations for GIS-
 transpositions, we can now revise (4.2a) to ask: is (4.4.1) the case?

 ^^To see this, we reason as follows. Let i be any sample interval, and suppose
 interval i is spanned between members x and y of set A. Then, since
 int(P(x),P(y)) = int(x,y), i is spanned between members P(x) and P(y) of set B.
 Conversely, if i is spanned between members P(x) and P(y) of set B, i must be
 spanned between members x and y of set A. Consequently, the number of ways
 that i is spanned by members of set A is exactly the same as the number of ways
 that i is spanned by members of set B. This being the case for any sample
 interval i, we conclude that B has the same interval content as A.
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 4.4.1 (a) Is it true that in any non-commutative GIS, sets that
 are related by interval-preserving transformation or by GIS-
 inversion must have the same GIS-interval content?

 (b) Is it true that in any non-commutative GIS, some pairs of
 sets may have the same GIS-interval content without being
 related by interval-preserving transformation or GIS-inversion? If
 so, we might wish to call such pairs "GISZ-related."
 (c) Is it true that in any non-commutative GIS, there are no

 GISZ-related pairs (in the above sense) of cardinality 3?

 4.4.2 No, (4.4.1) is not the case. Indeed, (4.4.1a) is still not the
 case. As noted in the third paragraph of (2.3) above, GIS-
 inversion operations will not be interval-reversing - indeed there
 will be no interval-reversing transformations at all in our non-
 commutative GIS. So we cannot conclude in all cases that a set A
 must have the same GIS-interval content as a GIS-inverted set of

 form B = I(A).20

 4.4.3 I will give here, in fact, a specific example of a GIS, a set
 A, and a set B, such that set B is a GIS-inversion of set A, but
 does not have the same GIS-interval content as A. Readers willing
 to take this on faith can move ahead to (4.5.1).

 We consider the group G already used in the example of
 (4.3.2): the six elements of G are e (identity), a, a2, b, ab, and a2b,

 subject to the requirements that a3 = e, b2 = e, ba = a2b, and ba = ab.
 As in (4.3.2), we consider G to be a GIS, and we take as "set

 A" in this GIS the two-element family comprising objects x = a
 and y = b.
 We take as inversion I the operation of e/e inversion. The

 operation is defined (as in (2.3) above) by the formula int(e,I(s))
 = int(s,e). In our present GIS, the formula means that e~!I(s) =
 s~]c. That is, I(s) = s'\ The set B = I(A) then comprises the two
 objects u = I(a) = a"1 = a2, and v = I(b) = b"1 = b.

 ^^The proof of (3.2), toward its end, relied explicitly upon our assumption
 that the GIS under consideration there was commutative, so that we could treat

 inversion operations in all generality as interval-reversing.
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 We have already computed the two non-identity intervals of
 set A; we do so again here: int(x,y) = x-1y = a~'b = a2b; int(y,x) is
 the inverse interval to int(x,y), the inverse of a2b, which is ba = a2b

 itself. Thus the two non-identity intervals of set A are both a2b.

 We compute the two non-identity intervals of our present set
 B: int(u,v) = u~V = (a2)-1b = ab; int(v,u) is the inverse interval to
 int(u,v), the inverse of ab, which is ba2 = ab itself. Thus the two
 non-identity intervals of set B are both ab.
 In sum, B is an inversion of A, but B (whose intervals are e, e,
 ab, and ab) does not have the same interval content as A (whose
 intervals are e, e, a b, and a b).

 4.5.1 Finally, (4.2c) is not true in every non-commutative GIS
 structure. That is, there exist GIS structures in which two 3-
 element sets A and B can have the same interval content, without

 being related by some interval-preserving operation (or by some
 transposition), or by some inversion operation.

 4.5.2 I will give here, in fact, a specific example of a GIS, a 3-
 element set A, and a 3-element set B, such that B has the same

 interval content as A, but is neither an interval-preserving
 transform of A (nor a transposition of A) nor an inversion of A.
 To the extent that the category of "GISZ-sets" is at all useful,
 then, A and B could be called "GISZ-related trichords."

 The demonstration that ensues here requires a certain level of
 experience in handling the vocabulary and techniques of group
 theory. Inexperienced readers may choose either to end their
 reading here or to consult with more mathematically experienced
 friends for confirmation. The demonstration now begins.

 4.5.2.1 Take as a group G the group with two generators, i and
 j, subject to the rule that ji = i"!j. From that rule it follows that ji"1

 = ij, and that j2i = ij2. From these observations the following
 formula can be deduced:

 FORMULA: for any integers b and c (positive, negative, or 0),
 jbic = icjb when b is even; = i^jb when b is odd.
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 From the formula, it follows that any member of the group
 can be expressed uniquely in the form iaj , where a and b are
 integers (positive, negative, or 0).

 4.5.2.2 The group just constructed is infinite, but the 3-element
 sets we shall examine below are of course finite, as are all things
 called "sets" in the present paper. We can make the group finite
 by imposing upon it the extra conditions: i = e, j = e; all
 exponents would then be computed modulo 4. Under the extra
 conditions, all of the arguments below will still go through as
 they stand.
 Thus our example depends neither upon an assumption that

 our GIS is infinite, nor upon an assumption that it is finite.

 The following lemma will be useful:

 4.5.2.3 LEMMA: Within our group, POFI = {the powers of i} is
 a normal subgroup. That is:
 (a) The group product of two powers-of-i is a power-of-i, and
 (b) The group inverse of a power-of-i is a power-of-i, and
 (c) For any ia in the subgroup POFI, and any x in the entire

 group, the group-combination xiax~' is a power-of-i (member of
 POFI).

 Proofs: (a) and (b) of the lemma are obviously true: iaic = i(a + °;

 the group inverse of ia is i ~a .

 To prove (c) of the lemma, we express x as icj for integers b
 and c. If the integer b is even, jb commutes with all powers of i,
 and so x commutes with all powers of i (members of POFI); then
 xi'x"1 = i'xx"1 = ia, which is a power-of-i (member of POFI). If the

 integer b is odd, then xi'x"1 = i("a)xx"' = i("a), which is a power-of-i
 (member of POFI).

 The lemma is proved.

 4.5.2.4 We take the entire group under consideration to be both
 the objects and the intervals for a GIS, in the familiar way [of
 (4.1.2)]. Within that GIS, we consider the 3-element sets
 A = {e, i, ij}, B = {e, j, ij}.
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 4.5.2.5 3-element sets A and B above have the same interval

 content. To see this, we compute the six non-identity intervals of
 A, which are i, i"1, j, j~\ ij, and (ij)"1, according to the scheme of
 Figure 15 below.

 Figure 15

 The figure is not exactly a transformational network in the
 sense of GMIT. The symbols labeling the arrows of the figure
 denote intervals, not transformations. That noted, we can see
 from the various arrow-labels that i is indeed the formal interval

 from e to i, defined as e-1i, that j is indeed the formal interval
 from i to ij, defined as i 1 ( ij ) , and that ij is indeed the formal
 interval from e to ij, defined as e~!(ij). The label for the lowest
 arrow of the figure, running from right to left, announces that the

 interval from ij to e is (ij)"1, the inverse of ij, which is to say the
 inverse of the interval-from-e-to-(ij). And so forth.

 Now we compute the six non-identity intervals of B, which are
 also i, i"1, j, j"1, ij, and (ij)"1, according to the scheme of Figure 16.

 As on Figure 15, the arrow-labels on Figure 16 tell the story.
 The arrow from j to (ij) is labeled by the interval i"1; that is
 because the interval from j to (ij), defined as j-1(ij), can be
 computed to be j"](ij) =j"1(ji"1) = (j^jji"1 =i~\ And so forth.

 Thus (4.5.2.5) is established: A and B do indeed have the same
 interval content. (Each set also "contains" three intervals of e.)
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 Figure 16

 4.5.2.6 B is not a transposition of A. The general GIS-
 transposition of the 3-element set A = {e, i, ij}, according to
 (4.1.3), is the set T(A) = {ex, ix, ijx}, where x is an element of the
 entire group.

 Now T(A) = {x, ix, ijx}, and B = {e, j, ij}. If in fact B were the
 same unordered set as T(A), then the element x of T(A) would
 have to be some element of B; hence we would have either x = e

 (Case 1), or x = j (Case 2), or x = ij (Case 3). We shall show that
 each of the three Cases, in turn, cannot happen. That will prove
 (4.5.2.6).

 Case 1: If x = e, then T(A) = {x,ix,ijx} = {e, i, ij}. This cannot
 be the same unordered set as B = {e, j, ij}, for the member j of the
 group is not the same as the member i of the group. Case 1 cannot
 happen.

 Case 2: If x = j, then T(A) = {x,ix,ijx} = {j, ij, ij2}. This cannot
 be the same unordered set as B = {j, ij, e}, since ij2 is not e. Case 2
 cannot happen.

 Case 3: If x = ij, then T(A) = {x,ix,ijx} = {ij, i2j, (ij)(ij)}. This
 cannot be the same unordered set as B = {e, j, ij}, since the
 member e of B is neither ij, nor i2j, nor (ij)(ij), in our group. Case
 3 cannot happen.

 (4.5.2.6) is thus proved: 3-element set B is not a transposition
 of 3-element set A.
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 4.5.2.7 B is not an interval-preserving transformation of A.
 The general interval-preserving transformation of the 3-element
 set A = {e, i, ij}, according to (4.1.3), is the set P(A) = {xe, xi, xij},
 where x is an element of the entire group.

 Now P(A) = {x, xi, xij}, and B = {e, j, ij}. If in fact B were the
 same unordered set as P(A), then the element x of P(A) would
 have to be some element of B; hence we would have either x = e

 (Case 1), or x = j (Case 2), or x = ij (Case 3). We shall show that
 each of the three Cases, in turn, cannot happen. That will prove
 (4.5.2.7).
 Case 1: If x = e, then P(A) = {x,xi,xij} = {e, i, ij}. This cannot be
 the same unordered set as B = {e, j, ij}, for the member j of the
 group is not the same as the member i of the group. Case 1 cannot
 happen.

 Case 2: If x = j, then P(A) = {x,xi,xij} = {j, ji, jij}. This cannot
 be the same unordered set as B = {j, ij, e}, since e is a member of
 B and neither j, nor ji, nor jij is e. Case 2 cannot happen.

 Case 3: If x = ij, then P(A) = {x,xi,xij} = {ij, iji, (ij)(ij)}. This
 cannot be the same unordered set as B = {e, j, ij}, since the
 member e of B is neither ij, nor iji, nor (ij)(ij), in our group. Case
 3 cannot happen.

 (4.5.2.7) is thus proved: 3-element set B is not an interval-
 preserving transformation of 3-element set A.

 4.5.2.8 B is not a GIS-inversion of A. The general GIS-
 inversion of the 3-element set A = {e, i, ij}, according to (4.1.3), is
 the set I(A) = {xe^y, xi"1/, x(ij)"1y}, where x and y are elements of
 the entire group.

 Now I(A) = {xy, xi"V, x(ij)~Jy}, and B = {e, j, ij}. If in fact B
 were the same unordered set as I (A), then the element xy of I (A)
 would have to be some element of B; hence we would have either

 xy = e (Case 1), or xy = j (Case 2), or xy = ij (Case 3). We shall
 show that each of the three Cases, in turn, cannot happen. That
 will prove (4.5.2.8).

 Case 1: If xy = e, then y = x~*j and I(A) = {xy, xi^y, x(ij)~'y} =
 {e, xi^x"1, x(ij)~lx~1}, while B = {e, j, ij}. Since we are supposing
 that I (A) = B, it follows that the 2-element sets I(A') and B',
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 formed by removing e from I(A) and B respectively, would have
 to be the same. We would have I(A') = {xi'V1, xUp'V1} the same
 set as B1 = {j,ij}. But the member xi^x"1 of I(A!) must be a power
 of i (Lemma 4.5.2.3), and neither member of set B1 is a power of i.

 So Case 1 cannot happen.
 Case 2: If xy = j, then y = x-1j and I(A) = {xy, xf'y, x^j^y} =

 {j, xf'x^j, x(ij)~1x"1j}. If this were the same unordered set as B =
 {j, ij, e}, then the 2-element sets I(A') andB1, formed by removing
 element j from sets I (A) and B respectively, would have to be the
 same. So we would have {xi'V'j, x(ij)"1x"1j} = {ij, e}. Now the
 member xfV'j of set I(A') is some-power-of-i times j (by
 Lemma 4.5.2.3). Since member e of set B1 is not some-power-of-i
 times j, xi^x^j must be the remaining member of set Bf, namely
 ij. Thus xf'x^j = ij. Canceling j from the right side of the
 equation, we infer that

 (1) xi'V1 =i.
 There is only one remaining member of I(A') to match with

 only one remaining member of B1. We must have
 (2) x(ij)-1x"1j = e.
 Let us set x = iaf. According to equation (1) just above, we have

 i = xi'V1 = (iajb)(i"1)(j"b)(i"'). If the integer b were even, jb would
 commute with everything in the group, and so i would = i~ . This
 is not the case. So b must be odd.

 Substituting x = iajb in equation (2) above, we have the
 equation e = xGjrV'j = tf)$m\?W)) = ^))^XW)) =
 (ia)j(b"1)(i"1)(j"b)(iHl)j. Since the integer b is odd, the integer b-1 is
 even, j(b " ° commutes with (i"1), and the expression at the
 end of the preceding sentence = (ia)(i"1)j(b"1)(j"b)(iHl)j, which is
 (i(^°)(j"1)(i"*)j, which - the j-exponents here being odd - is
 (i^Xj-'Xnj = (i^l)W)(y1)) = i(2a'!). In sum, we have inferred
 e = i(2a-1). But there is no integer a satisfying 2a-l = 0.21

 21 Here it is crucial that, when we considered modularizing our infinite

 group in (4.5.2.2), to make it finite, we imposed the extra condition i = e
 (rather than say iN = e, where N is some odd number). If N were odd, then there
 would be no difficulty finding some number a satisfying 2a - 1 =0 mod N. But
 there is no such number a mod 4.
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 So Case 2 cannot happen.
 Case 3: If xy = ij, then y = x"!ij and I(A) = {xy, xf'y, x(ij)~ly} =
 {ij, xi^x^ij, x(i])~lx~lij}. If this were the same unordered set as B =
 {ij, j, e}, then the 2-element sets I(A') and Bf, formed by removing
 element ij from sets I (A) and B respectively, would have to be the
 same. So we would have {xr'x^ij, x(ij)~1x~1ij} = {j, e}. Now the
 member xi^x'ij of set I(Af) is some-power-of-i times j (by
 Lemma 4.5.2.3). Since member e of set B1 is not some-power-of-i
 times j, xi^x^j must be the remaining member of set B', namely j.
 Thus xi^x^j = j. Canceling j from the right side of the equation,
 we infer that xi^x"1 = e. But then i~*= x~*ex = e. And that is not
 the case.

 So Case 3 cannot happen.
 (4.5.2.8) is thus proved: 3-element set B is not an GIS-
 inversion of 3-element set A.

 Our demonstration is finished. 3-element sets A and B have

 the same GIS-interval content in our (non-commutative) GIS, but

 B is neither an interval-preserving transform, nor a GIS-
 transposition, nor a GIS-inversion of A.

 In general, our argument will go through if we impose the conditions iN = e
 and jM = e, where M and N are both even integers, and N is bigger than 2 M
 must be even so that we can distinguish the odd powers of j from the even,
 modulo M. N must be bigger than 2, so that we can distinguish i from i"1
 (which is i(N"I}).

 M, unlike N, may equal 2. In that case the group generated by i and j is "the
 dihedral group of order 2N." GIS structures possessing dihedral groups of
 intervals of order 2N, N being even and bigger than 2, have in fact already been
 used for music-analytic purposes in the standard literature. The author applied
 such a GIS - using the dihedral group of order 12 - to the music of
 Schoenberg, in "Generalized Interval Systems for Babbitt's Lists, and for
 Schoenberg's String Trio," Music Theory Spectrum MIX (Spring 1995): 81-118.
 Edward Gollin applies such a GIS - using the dihedral group of order 8 - to
 the music of Bart6k, in "Some Unusual Transformations in Bart6k's 'Minor

 Seconds, Major Sevenths'," to appear in the next issue of this journal.
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