
 Klumpenhouwer Networks, Isography, and the
 Molecular Metaphor

 Shaugn O'Donnell

 David Lewin formally introduces Klumpenhouwer networks
 (henceforth K-nets) to music theorists in the article
 "Klumpenhouwer Networks and Some Isographies that Involve
 Them."1 He presents K-nets as a variation of what I call Lewin
 networks (henceforth L-nets), which are networks of pitch classes
 related by transposition. L-nets articulate the dynamic nature of a
 set's internal structure by interpreting it as a web of transpositions
 rather than a static collection of pitch classes. This interpretation
 not only highlights a set's inherent ability to be a transformational
 model for subsequent musical gestures, but also allows numerous
 graphic possibilities for representing a single pitch-class set as
 shown in Example 1.

 Example 1. All eight L-nets modeling[0l3].

 T T T T

 u/t, tA/t3 t\A3 t\a3
 © © © ©
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 vi^/ v~y vL/ vc/

 One might consider each of these networks to be a specific
 interpretation of [013]'s interval-class vector, emphasizing

 *Lewin, "Klumpenhouwer Networks and Some Isographies that Involve
 Them," Music Theory Spectrum 12/1 (1990): 83-120. Henry Klumpenhouwer
 first developed K-nets during his work on "A Generalized Model of Voice-
 Leading for Atonal Music** (Ph.D. dissertation, Harvard University, 1991).
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 particular transformations within the set.2 In the most abstract
 sense, Klumpenhouwer expands Lewin's network model by
 allowing inversion operations within transformation networks. As
 Lewin suggests, this is "both simple and profound in its
 implications." ^ While transposition alone allows eight ways to
 model any given trichord, replacing one or more of the Tn arrows
 with In arrows allows nineteen additional - for a total of twenty-
 seven - possible interpretations. Example 2 again uses [013] to
 generate the nineteen new transformation networks.
 Klumpenhouwer's expansion is possible because one element of a
 dyad can map equally well onto the other via transposition or
 inversion. This simple abstraction results in the dramatic increase
 in graphic possibilities shown between these two examples. The
 practical applications of K-nets, however, are much more
 restricted than Example 2 suggests.
 Lewin quickly points out that the primary advantage of K-nets
 is the ability "to interpret chords of different set classes with
 isographic networks."^ To refresh the reader's memory:
 isographic networks are interpretations of sets yielding
 isomorphic graphs, or more simply, networks with the same
 configuration of nodes and arrows and sharing a mathematical
 correspondence between their analogous arrows. Furthermore, if
 the analogous transformation arrows are identical, networks are
 said to be strongly isographic.

 While Lewin uses isography to generate recursive
 supernetworks in his own analytical work, Klumpenhouwer uses
 this property to trace transformational mappings, which he
 interprets as voice leading. Transformational voices, particularly
 among chords belonging to different set classes, are my principal
 interest in this model, and the table in Example 3 compares the

 ^Digression #1: L-nets - as graphic models of the interval-class vector - are
 very useful in illustrating the structural differences between Z-related sets not
 evident from the vector itself. Howard Hanson implied this as early as 1960
 when he called Z-related sets "isomeric twins,** an earlier use of the molecular

 metaphor, in Harmonic Materials of Modern Music: Resources of the Tempered
 Scale (New York: Appleton-Century- Crofts, 1960), p. 22.
 *Lewin, "Klumpenhouwer Networks,** p. 84.
 Vbid.
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 Example 2. Nineteen additional K-nets modeling [013].

 T T T T
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 © © © ©
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 number of possible voice-leading mappings between sets of the
 same cardinality with the number of possible network models for
 sets of the given size. 5 Obviously, in terms of voice leading, it is
 excessive to have 32,768 different L-nets - not to mention having
 more than fourteen million K-nets - when there are only 720
 different mappings between any two hexachords.

 Example 3. Comparison of possible mappings and networks.

 Cardinality Mappings

 dyad

 trichord "

 tetrachord "

 pentachord 120 "" l.OlT

 hexachord

 septachord

 octachord

 nonachord
 decachord

 monodecachord 39,916,800 2" "W
 dodecachord 479,001,600' 2°° 3°°

 In practice, most of the additional interpretations elicited by
 Klumpenhouwer's theoretical abstraction do not afford any new
 relations among pitch-class sets, and the power of K-nets actually
 resides in a very small subset of these numerous possibilities. First,
 note that the [013] graphs in Examples 1 and 2 include three
 kinds of networks: there are those using only Tn arrows (the L-

 ^The number of possible voice-leading mappings is calculated by n! where n
 equals the cardinality of the set. The number of possible L-nets is calculated by
 2P where p equals the number of interval classes contained in the set. The
 cardinality n can be used to determine the value of p with the equation p = n (n
 - 1) + 2. For example: tetrachords contain p = 4x3-*-2 = 6 interval classes,
 therefore if p = 6, then 2P = 26 = 64 possible L-nets. The possible K-nets are
 calculated by a similar formula 3P. For example: if p = 6 (using tetrachords again)
 then 3P = 36 = 729 possible K-nets.
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 nets gl-g8), those using one In and two Tn arrows (g9-g20), those
 using one Tn and two In arrows (g21-g26), and one using all In
 arrows (g27). I will immediately eliminate two of these
 groups - specifically g9-g20 and g27 - as they are not well-
 formed, and by that I mean that their various transformational
 pathways are not equal. For example, traveling the direct route
 from C up to Et in g9 involves the path I3, while the alternative
 route to EJ>, with its layover at Dp, involves the paths T, and T2,
 which sum to T3 rather than I3, and therefore (as T, + T2 ^ I3) the
 network is not well-formed.

 The first group, the L-nets, although well-formed, do not
 relate sets beyond traditional set-class boundaries. To exhibit
 strong isography two L-nets must model Tn-related pitch-class
 sets. Example 4 illustrates this phenomenon by building networks
 on each of the twelve pitch classes from the arbitrarily chosen gl,
 yielding the twelve members of Tn-type [013]. Any of the other
 seven L-nets in Example 1 similarly generate this complete Tn-
 type. In duplicating a subset of traditional set classes, specifically
 the Tn-type, these networks are redundant in terms of voice-
 leading transformations, and their primary value is their potential
 for replication on different structural levels.

 Example 4. Twelve strongly isographic L-nets
 modeling Tn-type [013].

 T T T T

 @ - L*© (§} - 2~~*GD @ - 2~*£D (E) - ^^KsD
 x\ /t t\ /t t\ /t t\ /t

 © © © ©

 (fV^-Vg) @-^® (gV^-Ka) ^^-WbC)
 T \ XT X \ /T X \ xT X \ xX
 1 | X^i^ 1 3 1 i y^*S A3 A j X^.^ 1 3 1 1 \^»V^ 1 3

 T T T T

 (a) - ^-^(b) (b^ - ^-^c) (^) - ^^D (§} - ^"KE)
 t\ /t X\ /T X \ /T X\ /T ii vy /t A3 X\ iiVva3 /T X i1\/i3 \ /T X\ i,\/i3 /T
 (a£) (a) Q*) (b)
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 After excluding the eight L-nets and the thirteen ill-formed
 networks, only the six graphic interpretations shown in Example 5
 remain viable. Arbitrarily taking the third of these graphs, k3, and
 building identical networks on each pitch class yields the twelve
 strongly isographic networks shown in Example 6. Significantly,
 these networks do not embody set-class relationships, rather, they
 form a family of similarly structured pitch-class sets not primarily
 related by transposition or inversion. The prime form of each set
 is given under its graph in the example. To differentiate these
 families from traditional set classes, I label such collections of

 strongly isographic networks Klumpenhouwer classes (henceforth
 K-dasses). This is not Lewin's or Klumpenhouwer's terminology;
 they explore network isography in individual analytical cases,
 rather than as a generalizing force. Note that this class crosses
 traditional cardinality boundaries by incorporating two pitch-
 class dyads with doublings: {Cjt, D} and {G, Al>}.6 Each of the K-
 nets in Example 5 could generate similar K-classes.

 Example 5. The six well-formed K-nets modeling [013].

 Til

 @ »@ @« »@ @«-1->'©

 (formerly g21) (formerly g23) (formerly g25)

 (SV^2-© @V-^g) @*±-*@
 I/WI3 T.VVl, iV/t,
 ici 1C1 (cS

 (formerly g22) (formerly g24) (formerly g26)

 "Digression #2: This property of K-classes intersects nicely with Robert
 Morris's KI complexes described in "K, Kh, and Beyond," Music Theory in
 Concept and Practice (Rochester: University of Rochester, 1997), pp. 275-306.
 Each connected pair of set classes in his abstract inclusion lattices has members
 belonging to the same K-dass, and traveling more than one path is an
 interesting method of moving between different K-classes.
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 Example 6. Sample K-class.

 I I I T

 T\yiT tVX t\!/T T\yiT
 © @ © ©
 [013] [01] [012] [014]

 I I I I

 © © © ©
 [016] [015] [013] [01]

 I ^-^ I ^-v x^v I I

 [012]

 Though not explicitly stated in Lewin's or Klumpenhouwer's
 work, the power of Klumpenhouwer's abstraction resides in the
 small subset of networks with the ability to generate classes such
 as those shown in the previous example. Referring back to
 Example 5, note that the six networks modeling [013] with this
 potential all incorporate two In arrows and one Tn arrow. In other
 words, each network contains a transpositional dyad and one
 other pitch class that is related by inversion to both members of
 the dyad.

 Another way to think of this structure is as a partition of the
 set into two subsets linked by In arrows. Note also that the
 vertically-aligned networks in the example are identical except for
 the reversal of the Tn arrow directions. The left networks both
 isolate the inversional singleton C, the central networks isolate E)>,
 and the right isolate Dl>, thereby exhausting all the partitions of
 the set other than the set itself. This demonstrates a property that
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 is true for sets of any cardinality, and the number of practical K-
 nets arises from the total number of partitions less one. The table
 in Example 7 presents these more manageable numbers for sets of
 cardinalities three through six.7 The reason for distinguishing
 practical from well-formed K-nets is that the direction of the Tn
 arrows is not significant in terms of developing K-dasses and
 voice leading, though it can suggest subtle interpretive differences
 on the level of individual sets and their higher-level replications.

 Example 7. Comparison of possible

 mappings and practical networks.

 Cardinality Mappings Practical Practical Well- formed K-nets
 L-nets K-nets

 trichord J$

 tetrachord _24

 f1 entachord 120 exachord 720 1 31 8,704

 K-nets are thus part of a recent theoretical trend that parses
 pitch-class sets into subsets to explain relations among sets
 belonging to different set classes. Most notable in this movement
 are what I call singleton models, particularly Allen Forte's "unary
 transformations," David Lewin's "if-only," and Joseph Straus's
 "near-operations" - all manifestations of Forte's earlier Rp
 relation. 8 The sizable body of musical works discussed by Forte,

 ^The formula 21*"1 - 1, where n equals the cardinality of the set, generates
 the number of possible practical K-nets, while flipping each of the Tn arrows
 generates the number of well-formed K-nets. The excluded unity/null
 partition corresponds to practical L-nets as implied by Example 4.

 °To refresh the reader's memory: pitch-class sets of cardinality n are Rp
 related if they share a subset of the cardinality n - 1. Forte introduces unary
 transformations in "New Modes of Linear Analysis," paper presented at the
 Oxford University Conference on Music Analysis (1988), and the Rp relation
 in The Structure of Atonal Music (New Haven: University of Yale Press, 1973) p.
 46ffi Lewin introduces if-only in "Transformational Techniques in Atonal and
 other Music Theories," Perspectives of New Music 21 (1982-83), pp. 312-371,
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 Lewin, Straus, and Klumpenhouwer in introducing their
 respective models suggests that partitioning is a fruitful analytical
 avenue. Furthermore, the number of theorists independently
 arriving at and exploring similar approaches, as well as the
 increasing number of current dissertations and theoretical papers
 on related topics, suggests that something about these subset-
 oriented models resonates well with us as musicians. 9

 The development of all these new transformations is a reaction
 to the exclusive nature of the traditional transposition and
 inversion operators, which allow at most twenty-four relations
 among the 4,096 possible pitch-class sets. The exclusivity of
 traditional set classes not only leads towards a fragmented
 analytical approach that traces independent paths for each
 prominent set class within a given musical work, but often also
 leaves large temporal gaps between two "adjacent" members of
 the same set class.

 At the opposite end of the spectrum one finds John Roeder's
 voice-leading model which traces independent lines for each
 registral voice in a passage, thereby allowing any set to transform
 into any other. 10 Many theorists' work in this area is a search for

 and further develops the concept in Generalized Musical Intervals and
 Transformations (New Haven: Yale University Press, 1987); and Straus
 introduces near-operations in "Voice Leading in Atonal Music," Music Theory
 in Concept and Practice (Rochester: University of Rochester Press, 1997), pp.
 237-274.

 "A sampling of recent items - within the past few years - includes: Brian
 Alegant, "When Even Becomes Odd: A Parti tional Approach to Inversion, "
 paper presented at the Society for Music Theory Annual Conference (Baton
 Rouge, 1996); the transformational voice leading component of Michael
 Buchler's "Setmaker" software for Macintosh computers (version 5.0, ©1996);
 Edward Jurkowski, "A Model for Non-Equivalent Set-Class Associations: The
 Interval-Difference Network," paper presented at the Music Theory Society of
 New York State Annual Conference (Stony Brook, 1996); Stephen Nuss,
 "Tradition and Innovation: The Art Music of Post- War Japan" (Ph.D.
 dissertation, City University of New York, 1996); and, Ian Quinn, "Fuzzy
 Transposition of Pitch Sets," paper presented at the Society for Music Theory
 Annual Conference (Baton Rouge, 1996).

 ^Roeder, "A Theory for Voice Leading in Atonal Music" (Ph.D.
 dissertation, Yale University, 1984), and "Voice Leading as Transformation,"
 Musical Transformations and Musical Intuition: Eleven Essays in Honor of David
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 a satisfactory location along this exclusivity-promiscuity
 continuum; for example, consider the following chain of events in
 Forte's work: (1) he codifies set classes based on transposition and
 inversion; (2) he introduces the Rp relation to allow relations
 beyond the limits of the above set classes; (3) he complains that
 the Rp relation's practical value is limited because it relates too
 many sets; and (4) he develops unary transformations as a
 refinement of the Rp relation. While traditional operations are
 overly exclusive and Roeder's abstract model is overly
 promiscuous, my ideal location on the continuum currently
 resides in two transformations called dual transposition and dual
 inversion.11

 Dual transposition is a transformation using two simultaneous
 transpositions, that is, some voices move at Tn while the
 remainder move at Tn+X, resulting in the compound
 transformation Tn/Tn+X. 12 More formally, imagine two pitch-class
 sets J and K. Partition each of these sets into two discrete subsets
 encompassing the entire set, so that they become the partially
 ordered sets J = <{jl}, {j2}> and K = <{kl}, {k2}>. The
 cardinalities of these sets and subsets are irrelevant, except that

 Lewin, ed. Raphael Atlas and Michael Cherlin (Roxbury, MA: Ovenbird Press,
 1994), pp. 41-58. Note that while Roeder's model has the ability to relate all
 sets, he does not in fact use it to do so, instead he applies other transformational
 criteria as filters in his analyses.

 ^Previous papers by the author on these transformations are: "Harmonic
 Progression and Voice Leading in the First of Stravinsky's Movements for Piano
 and Orchestra? paper presented at the Music Theory Society of New York State
 Annual Conference (Flushing, 1993); "Transformational Voice Leading in
 Two Songs by Charles Ives," paper presented at the Society for Music Theory
 Annual Conference (Baton Rouge, 1996); and, "Transformational Voice
 Leading in Atonal Music" (Ph.D. dissertation, City University of New York,
 1997). An earlier version of this article was presented at the University of Iowa
 (April 1998), and I would like to thank those present, particularly Michael
 Buchler and Nancy Rogers, for their insightful comments and questions.
 Stephen Soderberg uses "dual inversions" toward different ends in "Z-Related
 Sets as Dual Inversions," Journal of Music Theory 39/1 (1995): 77-100.

 ^My notation includes a slash between the two operators to distinguish
 dual transformations from composite operations, which operate sequentially on
 the same object rather than simultaneously on different objects.
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 the cardinality of each subset must be at least one. If Tn
 transforms {jl} into {kl}, and Tn+X transforms {j2} into {k2}, then
 Tn/Tn+X transforms J into K. Dual inversions work identically
 except that In transforms {jl} into {kl} and In+X transforms {j2}
 into {k2}, and therefore In/In+X transforms J into K. In other
 words, some voices move at In while the remainder move at In+X.
 These transformations are best illustrated by musical examples.

 Example 8 shows a progression of four chords labeled cl-c4.
 The middle of the progression, c2 - ► c3, comprises a member of
 set-class [0237] transforming into a member of set-class [0257].
 By definition, traditional transposition or inversion cannot
 generate this transformation, but as notated at the bottom of the
 example below the mappings, the dual transposition T,/Tlo can.
 That is, T, transforms the bass-clef dyad, while T,o transforms
 the treble-clef dyad. In this and subsequent examples, solid and
 dashed arrows distinguish between the two Tn levels in the
 mappings. Intellectually this process involves first partitioning the
 c2 tetrachord {G, Bt, El>, At} into two discrete dyads {G, Bt} and
 {Et, At}, and then tracing the dyads* independent transpositional
 paths into the dyadic subsets {At, Ct} and {Dt, Gt} of the c3
 tetrachord {At, Ct, Dt, Gt}. Put in simple terms, I am asking the
 reader to hear the [03] dyad move up a half step and the [05]
 dyad move down a whole step.

 The progression c2 - ► c3 illustrates the power of dual
 transpositions to generate mappings among different set classes,
 but they can also generate mappings among members of the same
 class, sometimes in ways that are more satisfactory than
 traditional operations. I could interpret the initial progression cl
 - * c2 as a traditional I8, but that would involve hearing the dyads
 flip as shown by the mappings in Example 9. Such an
 interpretation is plausible for the bass-clef dyad, as Bt acts as a
 common tone, but it is less satisfactory for the treble-clef dyad.
 On the other hand, the dual transposition T9/T3 shown in
 Example 8 suggests hearing the symmetry of the progression as
 the two dyads move away from each other by complementary Tn
 values. It is much easier to hear the motion of the parallel intervals
 than the pitch-class inversion in this particular case.
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 Example 8. Dual Transposition.

 p r r rr r ^^
 (I*/ r r T T =

 cl c2 c3 c4

 [0237] [0237] [0257] [0257]

 p

 C

 Dt

 Bt

 T9/T3 T./T^ Tn/Tn

 The final progression c3 "♦ c4 illustrates a situation in which
 traditional and dual transpositions agree. All the pitches of c3
 move down a half step to generate c4, but owing to the emphasis
 on the independent dyads in the three previous chords, the
 dyadic partition remains very audible as reflected by the notation
 Tn/Tn. The source of this abstract chord progression is the
 opening of Aaron Copland's Piano Sonata, shown in Example 10.
 I normalized the passage in the earlier example for reasons of
 clarity by removing the octave displacement in the
 transformation c3 "► c4, by omitting the orchestrational
 doubling in the left hand in chords c2- c4, and by eliminating any
 metric reference.
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 Example 9. Inversional mapping for c ,-* c2.

 [0237] [0237]

 I.

 Example 10. Aaron Copland, Piano Sonata, /, mm. 2-5.

 IAWlI i r i 1 J. J .'» 4"

 ^1 r9 r^ r4

 The Bartok excerpt shown in Example 11 illustrates dual
 inversions. The chord progression cl-c4 contains members of two
 different set classes: [0145] and [012]. The transformations
 among the last four chords reconfirm the power of dual
 transformations to generate mappings among sets from different
 classes, and further demonstrate that they can also span
 traditional cardinality boundaries. It is important to note that
 these sets have an equal number of pitches, despite the difference
 in pitch-class cardinality. In this model it is therefore possible to
 incorporate pitch-class doublings as components of independent
 voices, allowing analysts to distinguish between orchestrational
 doublings as in the previous Copland example and occasional
 pitch-class duplications between different voices as in the Bartok
 example. The progression cl - ► c2 shows that dual inversion, like
 dual transposition, can sometimes generate more satisfactory
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 mappings than traditional operations between members of the
 same set class. Example 12 presents the two possible operational
 mappings between cl ~"* c2 for comparison. As the title of the
 piece - "Minor Seconds, Major Sevenths" - suggests, it is the
 inversional transformation of the dyads that is most significant in
 this excerpt; the tetrachords result from this process, rather than
 generating it.

 Example 11. Dual inversion; Bela Bartok,
 No. 144, Mikrokosmos, VI m. 39.

 \n | ¥ *j f if :

 cl c2 c3 c2 c4

 [0145] [0145] [012] [0145] [012]

 A|

 B

 F»

 G

 I,A I,,/I2 I,,/I2 Io/I5
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 Example 12. Traditional mappings for c, -* c?

 [0145] [0145] [0145] [0145]

 Af^jrGi AK *G«

 B -^* F* B \V# Fx

 F|\jrE F»A^E G ^^D| G / *Dtf
 T9 I2

 Dual transformations and K-nets are two sides of the same

 coin. Example 13 interprets the Copland progression as four
 K-nets, kl-k4, representing the corresponding chords cl-c4. All
 four K-nets have the same configuration of nodes and arrows,
 identical Tn arrows, and analogous In arrows that differ by a fixed
 amount. Lewin defines this relation as positive isography (strong
 isography is the subset in which In arrows differ by 0), represented

 by <Tn>, where n equals the difference between analogous In
 arrows.13 In this progression <T0> transforms kl into k2,
 meaning the two K-nets are strongly isographic, that is, members
 of the same K-class. The transformations <TU> and <T,0> follow,
 transforming k2 into the positively isographic networks k3 and
 k4. Example 13 notates the series of transformations «T0>,
 <Tn>, <T10» under the mappings (identical to those in Example
 8 above) suggested by analogous nodes. <Tn> transformations
 group K-dasses into families of twelve classes - one for each
 possible value of n (0-11) - for a total of 144 related networks.
 Example 14 interprets the four chords, cl-c4, of the Bart6k
 progression as K-nets kl- k4. Note that these networks have the

 ^Lewin formally defines positive and negative isography in
 "Klumpenhouwer Networks." He further develops the relation in "A Tutorial
 on Klumpenhouwer Networks, Using the Chorale in Schoenberg's Opus 11,
 No. 2," Journal of Music Theory 38/ 1 (1994): 79-101, as does Klumpenhouwer
 in "A Generalized Model."
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 same configuration of nodes and arrows, complementary Tn
 arrows, and that their analogous In arrows sum to the same
 value.14 Lewin defines this relation as negative isography,
 represented by <In>, where n equals the sum of the analogous In
 arrows. Example 14 notates the series of transformations «I4>,
 <I,>, <I,>, <I5>> below the mappings (identical to those in
 Example 11 above). The concept of negative isography further
 expands the family of K-classes to 288 related networks. K-nets
 derive their analytical power from these extended families of
 positively and negatively isographic networks.^

 *^It is merely coincidence that the analogous In arrows also differ by a fixed
 amount in this example. This property ario »s from the identical I n arrows within

 each network, which, in turn, are simply a result of configuring these particular
 nodes this particular way.
 ^Digression #3: George Perle pioneered the research into these relations
 decades earlier in much of his theoretical, analytical, and compositional work.
 Of particular relevance is his work on P/I dyads and sum and difference scales
 in Twelve-Tone Tonality , 2nd ed. (Berkeley: University of California Press,
 1996). Perle specifically points out some of the connections between
 Klumpenhouwer's work and his own in a letter to Music Theory Spectrum 1 5/2
 (1993): "A Klumpenhouwer network is a chord analyzed in terms of its dyadic
 sums and differences... The analysis of tetrachords into their component dyadic
 sums and differences as a means of defining the relations between different
 tetrachords is demonstrated in the third chapter of Twelve-Tone Tonality!" [pp.
 300, 302] While a detailed comparison of K-nets and Perle's work is beyond the
 scope of this study, there are two fundamental differences worth noting here.
 First, the two models have different musical orientations. Perle's is primarily a
 compositional model or perhaps even a precompositional space, while
 Klumpenhouwer's is a graphic analytical model. Second, and more importantly
 in the context of this article, specific mappings are an essential part of
 Klumpenhouwer's approach, while Perle's cyclical sets imply no particular voice
 leading. The new edition of Twelve-Tone Tonality does include a brief chapter
 on voice leading, "Voice Leading Implications of Sum Tetrachords" (pp.
 177-182), but Perle seems to equate voices with registral lines and offers very
 few musical realizations of the progressions he discusses.
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 Example 13. K-nets modeling the Copland progression.

 0«L-(c) (g>^-0 (ci)Ji-^ (9)Jl_(c)

 @-^rK§) T (g)"^-*© (Shf*© T3 ©^r*© T3 T 3 T3 T3 T3

 cl c2 c3 c4

 F

 C

 Dt

 Bt

 <T0> <Tn> <T10>

 Example 14. K-nets modeling the Bartdk progression.

 (£jj)«l!i_(B) @i-@ ^)3-(G) (A>^-®

 cl c2 c3 c2 c4

 A

 B

 F|

 G

 <I4> <I,> <I,> <I5>
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 The previous two examples demonstrate that one could notate
 any <Tn> transform as Tn/Tn+X, and any <In> transform as In/In+X-
 That is, positively isographic K-nets can model any dual
 transposition and negatively isographic K-nets can model any
 dual inversion. A valid question at this point might be: if dual
 transformations are merely another way of describing K-nets,
 why introduce a new model? The answer is that while the two
 models have substantial similarities, they are complementary
 rather than identical. Returning to the Copland progression once
 again, the individuality of the two approaches is perhaps most
 obvious in the context of listener perception. Hearing the
 progression cl -♦ c2 as T3/T9 requires listeners to focus on the
 right hand moving up three semitones, while the left hand moves
 down three. In contrast, hearing the progression as <T0> requires
 listeners to focus on the hands wedging apart symmetrically.
 Most significantly, the precise linear transformation is irrelevant;
 the only requirement is that the two hands travel the same
 distance. In fact, cl - ► cl is as much <T0> as cl - ♦ c2.
 Continuing on to the progression c2 - ► c3 (which - unlike cl
 and c2 - does not comprise members of the same K-dass) further
 highlights the differences between dual transposition and <Tn>.
 As I mentioned above, interpreting c2 - ► c3 as T10/T, involves
 hearing the right hand move down a whole step and the left hand
 move up a half step. <Tn> requires the listener to hear the
 asymmetry or skewing of the wedge, specifically that one of the
 hands is a semitone "off." The final motion, c3 ""► c4, makes the

 difference even more prominent as the two hands move in similar
 motion. Hearing T,, as a wedge skewed by a whole step, <T10>, is
 quite counterintuitive. The fundamental difference between the
 two processes in question is one of internal versus external
 orientation, perhaps equivalent to the more historically familiar
 "vertical" versus "horizontal." Dual transposition (like traditional
 transposition) transforms pitch classes through a specified
 external or horizontal motion, and similarly, dual inversion
 transforms pitch classes by flipping them externally or
 horizontally around a given axis. K-nets' internal transpositions
 and inversions transform pitch classes by a vertical distance, or
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 through a vertical axis. This process makes the set dynamic, yet
 renders the transformation static; the horizontal voice leading
 results from equivalent locations in the internal or vertical
 structure rather than from any particular linear transformation.
 The wedging process does imply a specific kind of contrapuntal
 linear motion (complementary contrary motion), but the fact
 that the distance traveled along the wedge is irrelevant to the
 network process underscores its internal emphasis. Furthermore,
 <T0> wedging is relatively easy to hear in pitch space, but
 becomes more difficult as the value of <n> increases, and even

 more so as the musical universe shifts to pitch-class space.
 Comparing Examples 8 and 13, note the relation between

 corresponding <Tn> and Tn/Tn+X transformations: the <Tn>
 subscript equals the sum of the dual subscripts, or <n> = 2n + x.
 The same holds true for <In> and In/In+X (compare Examples 11
 and 14). Example 15 illustrates the significance of this difference
 in notation. The example shows three different <T0>
 transformations from the first chord of the Copland excerpt; the
 first, cl - ► c2.0, being identical to the original. The next two,
 however, result in chords c2.1 and c2.2, different progressions
 than those occurring in Copland's actual music. In fact, there are
 nine other possible <T0> transformations yielding different
 second pitch-class sets, as <T0> represents strong isography, or
 members of the same K-dass. The dual transpositions, on the
 other hand, distinguish among these twelve different
 progressions, and therefore provide a more successful foreground
 model of the voice leading. It is the x-value - the difference
 between the two transposition subscripts - and its effect on set-
 class metamorphosis that helps characterize the distinct
 transformations. Note that each of the Tn/Tn+X transformations in

 this example has a different x-value - 6, 8, and 2 - which results
 in c2.0, c2.1, and c2.2 being members of different set classes.1^

 *"It is possible to have different x-values result in members of the same set
 class, but dual transformations with the same x-value will - assuming the same

 partition - always result in the same set-class metamorphosis. Just as T5/T7
 transforms cl [0237] into c2.2 [0147] in Example 15, any x = 2 dual
 transposition of cl (T0/T2,T,/T3, etc.) results in a member of [0147]. For more
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 Example 15- <TH> versus TJTntx.

 cl c2.0 cl c2.1 cl c2.2

 [0237] [0237] [0237] [025] [0237] [0147]

 F -►At F ---►A F --+C

 C ---►El. C - ►£ C-- ►G

 D\>

 Bl.

 <T0> <T0> <T0>

 T,/T3 T8/T4 T5/T7

 If dual transformations generally offer a better foreground
 voice-leading model, as I suggested above, one might ask what is
 the advantage of continuing to use K-nets? There are at least two
 extremely significant reasons not to displace K-nets with dual
 transformations. The first is the extraordinary potential for
 network recursion. Dual transformations do not particularly lend
 themselves to replication on different structural levels, while K-
 nets provide an elegant recursive model. The second reason is
 more subtle. Recall that one weakness in deriving voices from K-
 nets is the model's internal orientation, that is, the mappings
 result from equivalent nodes rather than any specific linear
 transformation. Dual transformations remedy this problem by
 describing the same voice mappings using two simultaneous linear
 operators; in other words, they render dynamic the between-set
 transformation. Although a successful voice-leading model
 should have an external or horizontal orientation, the internal

 dynamism of the network model captures an invaluable
 dimension of musical structure that I think of as set integrity, or

 information on x-values see chapter 1 .4 of the author's "Transformational Voice
 Leading in Atonal Music.**
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 the modern equivalent of chord quality in tonal music. With its
 horizontal emphasis and explicit partitioning of sets, dual
 transformations do not satisfactorily model the cohesive quality
 of individual chords or sets, particularly in homorhythmic
 contexts. Although K-nets implicitly embody the same partitions,
 the graphic approach more successfully captures the unity of
 individual sets via a molecular metaphor.

 One of the most compelling aspects of this metaphor is the
 correspondence between different graphic interpretations of a set
 and the concept of isomers. ^ Example 16 includes three of the
 eight possible network interpretations of Copland's first chord,
 cl. Remember that there are 108 well-formed networks (64 L-
 nets and 44 K-nets) for every tetrachord, but only eight practical
 networks (seven K-nets and a single L-net). The first network, gl,
 is an L-net (arbitrarily arranged in ascending registral order),
 while kl is a 2+2 K-net and kl' is a 3+1 K-net. The example
 illustrates that networks are metaphoric structural formulas, set-
 class labels are molecular formulas, and that making the K-net
 partitioning explicit generates a rough equivalent to condensed
 structural formulas.18 These condensed structural formulas are a

 little misleading, and only provide sufficient information about a
 set in conjunction with the molecular formula. That is, using kl
 as an example, [03] [05] represents a complete K-net family, and
 not just "iso"[0237]. It would be more precise to use [03] [27] as
 the condensed structural formula for kl, but the more abstract

 [03] [05] better facilitates pivoting between set classes and K-net
 families for analytical or compositional purposes. The complete

 ^Jeffrey Johnson also points out this correspondence in Graph Theoretical
 Models of Abstract Musical Transformations: An Introduction and Compendium for
 Composers and Theorists (Westport, CT: Greenwood Press, 1997): 28-29.

 ^Digression #4: Morris's rigorous work on set-class unions in "Pitch-Class
 Complementation and its Generalization," Journal of Music Theory 3412 (1990):
 175-245, formalizes many of the properties of my condensed structural
 formulas without K-nets in mind. Significantly, while Morris generalizes non-
 intersecting unions, K-nets incorporate the possibility of pitch-class
 duplication. Such pitch-class "weighting" - which results in the cardinality
 differences in some K-dasses - corresponds metaphorically to molecular
 isotopes.
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 list of [0237] isomers is: [013] [0], [0l6][0], [027] [0], [037] [0],
 [01] [05], [02] [04], and [03] [05]. Each of the preceding isomers
 represents a K-net family, and the ability to reinterpret pitch-class
 sets this way has substantial voice-leading ramifications.

 Example 16. Isomers.

 © T / T 7 V

 T3T i
 JL structural formula: gl kl Id'

 (Si,) molecular formula: [0237] [0237] [0237]
 condensed structural formula: [0237] [03][05] [027][0]

 Taking the metaphor a little further, I visualize K-nets as three-

 dimensional ball-and-stick models with nodes standing in for
 atoms, and transformations functioning as bonds. Example 17
 illustrates the tetrahedral structure implied by kl\ This molecular
 model best captures the way I understand chord or set quality as
 a dynamic, yet cohesive, network of individual elements.
 Thinking of transformations as nondirectional bonds, rather than
 arrows, corresponds to my notion of practical, as opposed to well-
 formed, networks. I urge the reader to avoid letting the rigid
 appearance of the "sticks" render the model static, but rather to
 keep in mind the highly dynamic atomic processes they typically
 represent, such as sharing or stealing electrons. Unfortunately, the
 incompatibility of a three-dimensional model and this two-
 dimensional medium forces my K-nets into the "flat" form
 shown in my other examples.
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 Example 17. Three-dimensional "ball-and-stick" network.

 Obviously the molecular metaphor has many limitations; for
 example, in addition to the configuration of nodes and arrows,
 the specific content of each node is essential to chemistry, while I
 am assuming the transpositional equivalence of pitch classes.
 Imagine a chemical universe in which lithium sulfide (Li2S) is just
 a semitone up from water (H2O)! More significandy, concrete
 physical properties limit the bonding potential of elements in
 molecular nodes, while pitch-class nodes have no such limitations
 and may bond with any other. The lack of natural limitations on
 pitch-class bonds in L-nets and K-nets raises questions about the
 configuration of the arrows in these networks. Compare the
 isomers kl and kl' in Example 16. They model identical
 tetrachords, but kl has four arrows and kl' has six; Lewin uses

 these configurations for 2+2 (kl) and 3+1 (kl*) K-nets. In graph
 terminology kl is a 2-regular graph, while kl' is a complete
 graph.19 In 2-regular graphs each node connects to two others,
 thereby creating a single cycle, in this case a square because there
 are four nodes. Complete graphs differ in that each node
 connects to all the others, leading to my tetrahedron in Example
 17. If networks must be well-formed, then most of these arrows

 ^Johnson discusses K-regular and complete graphs in Part III of Graph
 Theoretical Models* 51-61. This terminology assumes that the transformational
 arrows are unrestricted, that is, I am still thinking of Tn arrows as being
 nondirectional for all practical purposes.
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 are redundant, and if each node has at least one arrow (see gl in
 Example 16), then the remaining arrows are all implied. I
 interpret all L-nets and K-nets as complete graphs forming solid
 shapes in three dimensions (gl and kl are also tetrahedrons), but
 prefer notating them as 2-regular graphs for reasons of clarity
 when working in two dimensions.
 In an effort to bring together several of the above threads I will

 conclude with a brief analysis of an excerpt from Schoenberg's
 Op. 11, No. 2; a short progression from the same "chorale"
 passage Lewin uses for his K-net tutorial. Example 18 includes the
 music and relevant K-nets from Lewin's more extensive

 analysis.20 The K-nets, kl-k4, at the bottom of the example
 interpret the chords, cl-c4, at the top of the example. Note that
 there are two pairs of positively isographic networks, kl - ► k2
 and k3 -► k4, and that these pairs are negatively isographic to
 each other. The two-plus-two pairing of positively and negatively
 isographic networks suggests that the graphs themselves may
 follow a transformational path similar to the pitch classes within
 the individual networks. The supernetwork K illustrates the
 isographic relation between the network-of-networks and kl-k4.
 As Lewin suggests: the supernetwork "thus interprets the
 progression of chords 1-2-3-4 by a K-structure that exactly
 reproduces, on a higher level, the structure that interpreted each
 chord."21 Lewin finds great significance in such recursive
 structures, and suggests a potential hierarchical voice-leading
 model by his choice of terminology:

 When a lower-level Klumpenhouwer Network is interpreting a chord, and a
 higher-level network-of-Networks is interpreting a progression of chords..., I
 noted that one could conceive of the higher-level network as "prolonging" the
 given progression. This potentiality of the system, observed again and again in
 the article, can afford an especially compelling rationale for asserting one

 20The K-nets in Example 18 are drawn from Lewin's examples 10, 12 and
 13 in "A Tutorial." I have modified his notation to match my own.

 2* Lewin, aA Tutorial,** 91 (emphasis original). Lewin's more in-depth
 analysis of this work takes things one step further, generating an even higher
 level network using «Tn» and «In» to model the overall progression of
 progressions. Theoretically these nestings could go on indefinitely.
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 particular Klumpenhouwer Network rather than another to interpret a given
 chord. I found it suggestively comparable, methodologically, to the ways in
 which a choice among foreground readings in a Schenkerian analysis can be
 influenced by middleground considerations.

 Unfortunately, the analytical elegance of network recursion
 loses some of its charm if one examines exactly what it implies on
 the musical surface. The first progression, cl - ► c2, illustrates this

 point. Lewin, unlike Klumpenhouwer, does not explicitly
 demonstrate the voice leading implied by his K-nets. The
 mappings labeled "Recursive Structure" in Example 18 illustrate
 the voices generated by the supernetwork K, while the mappings
 labeled "Adjacencies" are a series of dual transpositions that
 model my interpretation of the musical surface.

 A comparison of the two sets of mappings for the progression
 cl - ► c2 highlights the abstract nature of the recursive voice
 leading. The progression consists of a single melodic motion in
 the highest register heard against a sustained three-voice chord.
 The T0/T2 transformation of my foreground interpretation
 successfully captures this singleton partition, as well as the non-
 motion of the lower three voices. The <T7> mappings, on the
 other hand, retain the alto and bass voices, but suggest a soprano-
 tenor exchange and a 2+2 partition. Hearing the soprano A4 map
 into an already sounding E4, and the E4 map into B4 in the
 middle of its duration, strongly contradicts my experience of the
 progression.

 ^Lewin, "Klumpenhouwer Networks," 115. Digression #5: The
 importance of supernetworks in Lewin 's work raises the question: how
 meaningful an isomorphism is network recursion? In the most abstract sense,
 both Tn and <Tn> are about differences, while In and <In> are about sums.
 Despite this mathematical similarity, keep in mind that traditional and
 bracketed transformations operate on very different objects. <Tn> and <In>
 transform Klumpenhouwer arrows among isographic networks, while Tn and In
 transform pitch classes within a single network. This suggests a substantial
 functional difference (that is, transformations of transformations versus
 transformations of pitch classes), but within the context of the graphic model
 they both transform nodes. Currendy I find the isomorphism musically
 meaningful and useful on a middleground level, and somewhat less convincing
 on a background level incorporating supernetworks invoking «Tn» or «In».
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 The common tones in the motion c3 -♦ c4 conjure up the
 same issues, but restriking the pitches renders the recursive
 interpretation slightly less disturbing than in cl - ► c2. Just as the
 K-nets in Example 18 imply a very specific voice leading, the dual
 transpositions imply a very specific K-net interpretation.
 Note - by tracing the dashed arrows - that the recursive voices
 maintain the same partition, [04] [05], throughout the passage,
 while the adjacency voices repartition the sets in each progression.
 I refer to these mid-progression isomeric reinterpretations of sets
 as K-net double-empbi. Example 19 shows a graphic version of
 the adjacency voices. In the example horizontal K-nets are
 transformations and vertical K-nets are reinterpretations or
 isomers. Motion into and out of each chord involves a structural

 reconfiguration.
 In this musical passage, like many others, I find that both voice

 leading interpretations describe significant musical processes
 despite their contradictory characteristics. The recursive K-nets
 elegantly capture the middleground relation between the
 structure of the chords and the structure of the progression, but
 imply extremely abstract foreground voices. On the other hand,
 the dual transpositions capture the simple common-tone voices
 that underlie my foreground experience of the passage, but imply
 a rather complex series of graphic transformations and
 reinterpretations.

 As I find value in both the concrete mappings of surface-
 reinforced voices and the often abstract mappings of network
 recursions, I frequently incorporate both in my analyses in the
 non-hierarchical levels labeled "Adjacencies" and "Recursive
 Structure" shown in Example 18. I call these levels non-
 hierarchical because they model different aspects of the music,
 and one interpretation does not subsume the next as in a
 Schenkerian graph. They do, however, still suggest varying
 degrees of distance from the musical surface. As a musician, I
 want to retain the perceptible musical surface in addition to
 modeling middleground relations. Merging graphic and dual
 approaches to transformational voice leading allows for this
 possibility.
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 Example 18. Arnold Schoenberg,
 Three Piano Pieces, Op. 11, No. 2, mm. 9-10.

 ft i^ J dic^i f^

 cl c2 a c4

 [0146] [0157] [0157] [01^46]
 Adjacencies

 A

 B

 E

 B\>

 T0/T2 T3/T5 T0/T4

 Recursive Structure

 A\ //B- -> D

 e/' ^e>Cb^<a W^
 Bt

 <T7> <I2> <T8>

 To/T7 I./I, T8/To

 (£hr-K§) ®^^® &T+® @hr*©
 A 4 A4 ^8 A8
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