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 This paper explores a collection of pitch-class sets that,
 although strikingly different by most measures, share a graph-
 theoretical property defined below. A refinement on this property
 for sets with seven to twelve elements isolates five set classes, two

 of cardinality 7 and three of cardinality 8, four of which are
 notable for their musical importance. These include the usual
 diatonic (7-35, in Forte's taxonomy of set classes), the octatonic
 set class (8-28), the diatonic-plus-a-fifth (8-23), and Messiaen's
 mode four (8-9), a set that plays a role in the movement by
 Webern discussed herein. The maverick in this group is the
 heptachord 7-29: {0124679}. Yet another refinement on the
 property uniquely isolates the usual diatonic and the octatonic,
 perhaps the most productive larger subsets of the aggregate.

 This exercise forms part of an ongoing investigation into the
 abstract features of certain collections in the pitch domain that
 support more or less extensive musical repertoires. The diatonic
 collection is a celebrated case in point, and in the last few decades
 it has been studied from a variety of perspectives. Similarly, the
 highly symmetrical pitch-class sets, including Messiaen's modes
 of limited transposition, have received much attention,
 particularly for their importance in twentieth-century music. This

 paper studies a property that captures a number of musically
 significant sets and asks what else they have in common and how
 that might account for their musical potential.

 A version of this paper was presented at the annual conference of Music
 Theory Midwest, on May 17, 1996, at Western Michigan University. Another
 version was presented at the annual conference of the Society for Music Theory
 in Baton Rouge, November 2, 1996.
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 Ramsey Theory and its Application to Pitch-Class Sets

 The property and its refinements arise in the simplest version
 of Ramsey theory. The eponymous Frank Ramsey was a
 mathematician who made remarkable contributions in a number

 of fields before his untimely death at the age of twenty-six in
 1930. Let us begin with a simple puzzle arising from Ramsey's
 Theorem, a general and powerful result in mathematical set
 theory.1 The puzzle asks, "What is the smallest party one can
 have, such that necessarily three of those present are either mutual

 acquaintances, or complete strangers?" Presumably, the existence
 of such triples is a good thing for parties. As it turns out, the
 smallest party where such a situation is necessarily the case has six
 in attendance.

 This fact may be reformulated in terms of what graph theorists
 call chromatic complete graphs. A complete graph is a set of
 points, or vertices, arranged, let us say, in a circle, and all the line
 segments, or edges, that can be drawn between pairs of these
 points. A chromatic graph is one in which the edges are classified
 in some way, traditionally by assigning them various colors.
 Given a complete graph on six points, if the edges are colored in
 two ways, say, red and blue, somewhere in the graph there is a
 monochromatic triangle, with all sides either red or blue. This
 models the solution to the party puzzle, if we take blue to
 represent the relation of being acquaintances and red 'to represent
 being strangers, for instance. Actually, a stronger result can be
 proved: such a two-colored complete graph on six points has two
 forced monochromatic triangles. If there are only two
 monochromatic triangles, we will say the graph is minimal. Figure
 1 presents a minimal configuration, where instead of coloring the
 edges red and blue they are marked by thick and thin line
 segments. It is possible to have a minimal configuration with two
 all-thick triangles, two all-thin triangles, or one of each kind.

 ^rank P. Ramsey, "On a Problem of Formal Logic," Proceedings of the
 London Mathematical Society 2 (1930): 264-86.
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 Figure 1. Two-colored complete graph on six points, with a minimal
 solution to the party puzzle

 a

 d

 monochromatic triangles:
 (a, b, c) and (b, c, d)

 Goodman solves the general problem of how many
 monochromatic triangles are forced in any two-coloring of the
 complete graph on n points. The minimum number depends on
 the value of n modulo 4.2 Goodman's formulas: for n even, that

 is, n=2k, the number of forced monochromatic triangles is
 ik(k-l)(k-2); if n=4k+l, the number is lk(k-l)(4k+l); and if
 n=4k+3, the number is 2k(k+l)(4k-l). Thus, for n=7, there are a
 minimum of 4 monochromatic triangles, for n=8, there are 8, and
 for n=9, 10, 11 and 12 there are 12, 20, 28, and 40, respectively.
 Note that these equations correctly yield 0 when n is less than 6,
 and 2 when n=6.

 Moreover, it is possible to have a minimal configuration where
 all the forced monochromatic triangles are of the same color for
 odd n only when n=7. I will call a configuration that has
 monochromatic triangles of only one color purey here either pure

 2A. W. Goodman, "On Sets of Acquaintances and Strangers at Any Party,"
 The American Mathematical Monthly 69 (1959): 778-83.
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 all-thick or pure all-thin.3 Thus, pure minimal configurations
 exist for odd n only for n=7. All even cardinalities permit pure
 minimal configurations.
 Chromatic graphs in general and two-colored graphs in
 particular can model interpretations of pitch-class sets in various
 ways. The interval vector of a pitch-class set, for example, can be
 viewed as a tally taken on the complete graph of the set, with the
 edges sorted according to interval class (a six-colored chromatic
 graph). I will call an interval class small if it is 1, 2, or 3; large if it
 is 4, 5, or 6. Of course, small and large have no real meaning with
 respect to interval classes, but the distinction reflects the relative
 lengths of the line segments connecting points of a Krenek
 diagram, i.e., the relative sizes of the smallest representatives of
 the interval classes. If we assign blue (thick) to the small interval
 classes, and red (thin) to the large interval classes, we can apply
 the results for two-colored graphs. The monochromatic trichords
 divide into the all-small trichords (with a bow to Dr. Seuss) and

 the all-large trichord. The all-small trichords are the chromatic
 cluster type 3-1, prime form {012}, and the minor third type
 3-2, {013}; the all-large trichord is the augmented triad 3-12,
 {048}. It is easy to see that the two all-small trichords are indeed
 the only ones with interval vectors containing entries only in the
 first three places, while the augmented triad is the only trichord-
 type with no entries in the first three places of its interval vector.

 With this interpretation, there are two set classes of cardinality 5
 which yield critical graphs, that is, for which there are no all-small

 or all-large trichords: the usual pentatonic (5-35), and the other
 scalar arrangement of three major seconds and two minor thirds
 (5-34). (It is clear that we can associate an essentially unique
 graph to each set class, and that the classification does not
 depend on any particular representative of the set class:

 ^he mathematical literature uses terminology based on color, as I have
 indicated, and the term "blue-empty" is often encountered for graphs that have
 no all-blue triangles, but because I will be interested in interpretations of the
 colorings (as well as for reasons of practicality) I have altered the terminology to
 suit my purposes. A complete graph on 5 points that contains no
 monochromatic triangles is called a critical configuration.
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 transpositions and inversions of pitch-class sets correspond to
 rotations and reflections of graphs, and the count of
 monochromatic trichords remains undisturbed under these

 operations.)
 It is by no means obvious that this all-small/all-large

 interpretation will yield any minimal configurations, but for most
 cardinalities it does. For hexachords, in fact, minimal cases are
 abundant: nineteen set classes are minimal, of which thirteen are

 pure all-small and two are pure all-large, i.e., the two
 monochromatic triangles in their graphs are of the same color.
 The complete list appears in Table 1. Among the minimal
 hexachords are many interesting ones, including four all-
 combinatorial hexachords, one of each order: the whole-tone set
 (6-35), the Guidonian hexachord (6-32), the hexatonic set
 (6-20), and type D (6-7); also the so-called P&rouchka
 hexachord (6-30); Scriabin's mystic hexachord (6-34); and the
 Schoenberg signature hexachord (6-Z44). The minimal property
 may be relevant to serial composition in the case of hexachords,
 and I will return to this point briefly in the context of other
 interpretations of the Ramsey theory construction. In what
 follows, though, I will focus upon the larger sets, that is, sets of
 cardinalities 7 through 12, because of the overabundance of
 minimal hexachords and because my interest lies more with
 unordered sets that can serve to support individual compositions
 or even entire repertoires.

 Among the set classes of larger cardinality there are also, it
 happens, nineteen minimal cases (none of which are pure all-
 large). The list of minimal sets for the larger cardinalities appears
 in Table 2. There are five minimal heptachord classes: among
 them are the usual diatonic 7-35, and set class 7-22, which as a

 scale in one ordering is sometimes referred^ to as Hungarian or
 gypsy minor (harmonic minor with raised 4). Various modes of
 this type of scale are used in the music of several cultures, as well
 as in Western art music.4 There are ten minimal octachord

 4For further discussion of Hungarian minor and of the special formal
 properties of 7-22 and its cognates, see David Clampitt, " Pairwise Well-formed
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 Table 1. Minimal hexachords

 Set class pure all-small pure all-large trichords of
 same set class

 6-Z6 {012567} V V
 6-7 {012678} V V
 6-18 {012578} 7
 6-20 {014589} V V
 6-Z26 {013578} V V
 6-Z29 {013689} V V
 6-30 {013679} V V
 6-31 {013589}

 6-32 {024579} V V
 6-33 {023579} V V
 6-34 {013579}

 6-35 {02468t} V V
 6-43 {012568} 7
 6-Z44 {012569}

 6-Z46 {012469} V
 6-Z47 {012479} V
 6-Z48 {012579}

 6-Z49 {013479} V V
 6-Z50 {014679} V V

 Scales: Structural and Transformational Properties" (Ph.D. diss, State University
 of New York at Buffalo, 1997), 101-13 and Chapter 1, passim.
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 Table 2. Larger minimal sets

 Set class pure all-small all-small trichords
 of same set class

 7-20 {0124789}

 7-22 {0125689}

 7-29 {0124679} V
 7-30 {0124689}

 7-35 {013568t} V V

 8-9 {01236789} V
 8-16 {01235789}

 8-19 {01245689}

 8-20 {01245789}

 8-23 {0123578t} V
 8-24 {0124568t}

 8-25 {0124678t}

 8-26 {0124579t}

 8-27 {0124578t}

 8-28 {0134679t} 7 V

 9-12 {01245689t}

 10-5 {01234578te}

 10-6 {012346789t}

 12-1 {0123456789te}
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 classes. The unique minimal 9-note set class, 9-12, is Messiaen's
 mode three. This is the complement of the augmented triad, and
 is the maximally even set of cardinality 9, as defined by Clough
 and Douthett.5 There are two minimal 10-pc set classes: the set
 generated by ic5, and Messiaen's mode seven, the maximally
 even set that complements the tritone. The 11 -pc set class is not
 minimal, and the aggregate is minimal. Of the ten set classes that
 support transpositional invariance and are of cardinalities 6
 through 12, all are minimal.
 The first refinement on this property is to consider pure
 minimal sets. Only five set classes of cardinalities 7 through 12
 satisfy this condition, shown in Figures 2 and 3. There are two
 pure minimal sets of cardinality 7: the usual diatonic set
 (generated by ic5 and maximally even) and 7-29, the only one
 among the pure minimal sets with distinct inversions. There are
 three pure minimal sets of cardinality 8: the octatonic (Messiaen's
 mode two and maximally even), 8-23 (generated by ic5), and
 8-9, Messiaen's mode four. All of these are minimal pure all-
 small. Recall that 7 is the only odd cardinality that can support
 pure minimal sets.

 The second refinement is to consider minimal pure all-small
 sets where the all-small trichords are of the same set class. The

 only larger sets that survive this filter are the diatonic and
 octatonic sets. In both cases, all of the all-small trichords are of

 the filled-in minor third type. In both the diatonic and octatonic,
 half of the all-small trichords are inverted forms (with respect to
 the other half).

 The suggestive lists of sets brought together on each of the
 three levels of this hierarchy are disparate, as might be expected,
 since memberships in the categories are determined solely
 according to properties of the trichordal subsets. What is being
 captured by this Ramsey theory construction? Another property,
 one more tightly circumscribed but also embracing both highly
 symmetrical sets and others with fewer degrees of symmetry,

 5John Clough and Jack Douthett, "Maximally Even Sets," Journal of Music
 Theory 35/1-2 (1991): 93-173.
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 Figure 2. Minimal pure all-small 7-pc sets

 0 0

 6 5 6 4
 7-35 7-29

 all-small trichords in 7-35: all-small trichords in 7-29:
 (0, 1 , 3) (3, 5, 6) (5, 6, 8) (t} ft 1) (0, 1,2)0,2, 4) (4, 6, 7) (6, 7, 9)

 Figure 3. Minimal pure all-small 8-pc sets

 o

 6

 8-28

 all-small trichords in 8-28:

 (0, 1,3) (1 3, 4) (3, 4, 6) (4, 6, 7) (6, 7, 9) (7, 9, t)(9, t, 0)(t, ft 1)
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 Figure 3. Minimal pure all-small 8-pc sets (cont.)

 o o

 6 5

 8-9 8-23

 all-small trichords in 8-9: all-small trichords in 8-23:

 (0,1, 2) (1,2, 3) (6, 7, 8) (7, 8, 9) (0, 1,2) (1,2,3) (0, 1,3) (0,2, 3)
 (0,1,3) (0,2,3) (6,7,9) (6,8,9) ft 3, 5) (5, 7, 8) (7, 8, t) (t, 0, 1)

 that overlaps with the classes described here, is Clough and
 Douthett's maximal evenness. Note that each of the maximally
 even set classes from cardinalities 5 to 10 are minimal or critical

 (the pentatonic), and in particular that the diatonic and octatonic
 classes, both minimal pure all-small where the all-small trichords
 are of the same set class, are maximally even. The minimization
 of the {012} trichord has the effect of tilting towards evenness in
 larger minimal sets, but using Block and Douthett's measure of
 evenness some minimal sets are low on the evenness scale.6 In

 general, the higher the Forte label, the greater the Block-
 Douthett evenness. Thus, 8-9 is a minimal pure all-small set class
 that scores rather low in evenness.

 6 Steven Block and Jack Douthett, "Vector Products and Intervallic
 Weighting," Journal of Music Theory 38/1 (1994): 21-41.
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 The sets generated by ic5 are also well represented among the
 minimal sets. As is the case with maximally even sets, there is
 exactly one of this type per cardinality. Furthermore, the classes
 coincide for cardinalities 5 and 7: maximally even sets that are
 also generated are among the well-formed scales defined by
 Carey and Clampitt.7 The ic5-generated sets of cardinalities 5, 6,
 7, 8, 10, and 12 are all minimal or critical, and those of
 cardinalities 6, 7, and 8 are minimal pure all-small. Since both
 maximally even and generated sets have at least one degree of
 symmetry, none of the minimal sets that fall into these two
 classes have distinct inversional forms.

 This still does not go very far to answer the question of how (if
 at all) these formal properties in and of themselves signify an
 attractive musical potential. Without answering this question in
 any definitive way, I will suggest some approaches to the
 problem. One possibility is to consider the large vs. small
 partition for microtonal universes. This permits one to improve
 one's formal intuitions somewhat - for example, one finds that
 minimal configurations have a better chance of arising if the
 chromatic universe has cardinality congruent to 0 mod 4 - but we
 do not have many musical intuitions to bring to bear on
 microtonal set classes. In the usual 12-note universe, one can

 consider other reasonable ways of dichotomizing the interval
 classes to determine two-colored graphs. Two other balanced
 ways of partitioning the interval classes are even vs. odd, and
 consonant vs. dissonant, that is, the partition into the sets {345}
 and {126}.

 The even-odd partitioning may not seem very promising: it
 does not have the potential significance of consonance-
 dissonance, nor even that of smallness-largeness; moreover,
 possible minimal configurations would contain only all-even
 trichords. Since the difference of numbers of the same parity is
 even and the difference of numbers of opposite parity is odd, if
 all the members of a trichord are from the same whole-tone scale,
 the trichord is all-even, and if the members are not all from the

 7 Norman Carey and David Clampitt, "Aspects of Well-Formed Scales,**
 Music Theory Spectrum 11/2 (1989): 187-206.
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 same whole-tone scale, then the trichord is not all-even, but has

 two odd entries and one even entry in its interval vector. Thus, all
 and only hexachords with three elements from the even whole-
 tone scale and three from the odd whole-tone scale have exactly
 two all-even trichords, i.e., are minimal pure all-even. There are
 twenty-two such hexachordal set classes. Here the relevance to
 serial construction is more apparent. For twelve-tone rows with
 hexachords from the twenty-two set classes, the aggregate is
 partitioned into hexachords in two ways (the usual partition of
 the row into hexachords according to order numbers, and into
 the even and odd whole- tone scales), with the elements of each

 partitioning distributed evenly over the hexachords of the other
 partitioning. Andrew Mead, in response to my presentation of
 these notions, described his application of the Ramsey idea to
 hexachords, using the even- odd distinction, an outgrowth of his
 mnemonic device for classifying pitch-class sets according to the
 whole-tone scale partition.8 Given Mead's compositional/
 theoretical interests, the restriction to hexachords makes sense,

 and the even-odd partitioning is relevant to the pitch-class/order-
 number isomorphism, as described above. Moreover, one can
 introduce at least one refinement on the property, by considering
 hexachords where the two all-even trichords are of the same set

 class. I find, however, the small-large distinction more to my
 purposes, for one reason because for odd n no minimal
 configurations are possible under the even-odd interpretation (nor
 are there any critical configurations).

 Consider, for example, a seven-note pitch-class set. The best
 we can hope for is a division into four even elements and three
 odd elements (or vice versa, of course). The number of all-even
 trichords in such a set is five, since the three odd elements form
 one all-even trichord, and there are four all-even trichords formed

 from the four even elements. Recalling that the number of
 monochromatic triangles in a minimal configuration for n=7 is
 four, we can see that it is impossible to find a minimal
 configuration under the odd-even interpretation for n=7. A

 8Andrew Mead, "Pedagogically Speaking: A Practical Method for Dealing
 with Unordered Pitch-class Collections," In Theory Only 7/5-6 (1984): 54-66.
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 similar argument holds for any odd value.9 On the other hand,
 for even n, it is trivial to find minimal cases: just as with
 hexachords, we simply look for sets where the number of even
 and odd elements is equal. Thus, if n=2m, there are m elements
 in each group. The number of trichordal subsets from each group
 of elements of like parity is the combinatorial number "m choose
 3," or m!/(m-3)!3! = m(m-l)(m-2)/(3)(2)(l). Since all of these
 trichords are all-even, and there are two groups, there are exactly
 2 times m choose 3 or ^(m)(m-l)(m-2) all-even trichords. This is
 precisely the number of monochromatic triangles in a minimal
 configuration, as determined by Goodman's formulas cited
 above.

 On the other hand, the consonant-dissonant interpretation has
 the consequence that minimal configurations minimize consonant
 triads: here the harmonic triad is the only trichord corresponding
 to a monochromatic triangle. Of course, this selects against just
 such set classes as the diatonic and octatonic. It suggests,
 however, another attitude to take towards minimal pure all-small
 sets. Rather than focus on what is being minimized, that is,
 trichords where the elements are maximally pushed together (3-1
 and 3-2) or maximally pulled apart (3-12), perhaps we should
 take the point of view that in these cases the mixed trichords,
 among them the harmonic triads, are maximized.

 The following analogy, based on a construction communicated
 informally by Norman Carey, is suggestive. In the usual diatonic
 set, the two specific varieties of every non-zero generic interval
 can be sorted according to multiplicity as being either rare or
 common. Thus, minor seconds are rare, major seconds are
 common; minor thirds are common, major thirds are rare;
 perfect fourths are common, augmented fourths are rare; and
 similarly for the complements of these intervals. One can rank the
 diatonic modes according to the proportion of common or rare
 diatonic intervals from each modal center. In D Dorian, all
 intervals from D are common, and the number of rare intervals

 ^The same argument also shows why there are no critical configurations
 under this interpretation. Any arrangement of five pitch classes would have at
 least three of the same parity, which would form an all-even trichord.
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 increases by one for each move along the circle of fifths outward
 from D. Thus, for Lydian and Locrian, half of the intervals are
 rare, while for Ionian and Phrygian, one-third of the intervals are
 rare, and for Mixolydian and Aeolian, only one-sixth of the
 intervals are rare. In Ionian and Phrygian, then, there is a balance
 of rare and common intervals from the modal center, and thus a

 balance of information and redundancy relative to the center.
 Naturally, the balance is tipped toward the common intervals. A
 mode with only "rare" intervals would necessarily be non-
 diatonic: D-E|,-Fj(-Gjj-A|,-B|,-Cj)-(D). Carey refers to this mode as
 "The Gray Picture of Dorian."

 Unary Transformations and Minimal Sets

 Contextually defined transformations of pitch-class sets that
 globally leave all but one pitch class fixed (unary transformations)
 are significant in both tonal and post-tonal music.10 One property
 common to the three 8-pc minimal pure all-small sets and several
 other minimal sets relates to unary transformations of some of
 their maximal proper subsets, particularly the Cohn functions
 described by Lewin.11 In his 1994 paper, Cohn introduced the P-
 relation, which led to the maximally smooth cycles described by
 Cohn in a later article.12 Two sets are P-related if there exists a

 transposition or inversion mapping one set to the other that leaves
 all but one pitch class of the sets invariant and moves the
 remaining pitch class by interval class 1. A P-cycle is a cycle of

 10Forte introduced the term "unary transformation" in a paper entitled
 "New Modes of Linear Analysis," read at the Oxford University Conference on
 Music Analysis, Oxford, England, September 24, 1988.

 uDavid Lewin, "Cohn Functions," Journal of Music Theory 40/2 (1996):
 181-218.

 12Richard Cohn, "Generalized Cycles of Fifths, Some Late-Nineteenth
 Century Applications, and Some Extensions to Microtonal and Beat-class
 Spaces." Keynote address for the Fifth Annual Meeting of Music Theory
 Midwest/Eighth Biennial Symposium of the Indiana University Graduate
 Theory Association, Bloomington, Indiana, May 14, 1994; Cohn, "Maximally
 Smooth Cycles, Hexatonic Systems, and the Analysis of Late-Romantic Triadic
 Progressions," Music Analysis 15/1 (1996): 9-40.
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 length greater than two where adjacent sets are P-related. The
 non-trivial P-cycles identified by Cohn in the 12-pc universe,
 shown in Figure 4, take place within the set classes of the
 harmonic triad, the usual pentatonic, the usual diatonic, and the
 complement of the harmonic triad, another interesting list. 13 A
 modified P-relation, which I will call a Q-relation, allows the
 single pc to move by any interval class, keeping the other
 conditions for a P-relation: preservation of set class, and maximal
 retention of common tones. Furthermore, for a proper Q-
 relation, I insist that the moving pc not "jump over" any of the
 stationary pcs. If there is a jump, I will refer to a Q*-relation. For
 example, in a set that will play a role in the Webern analysis, the
 5-7 set class, {01267} and {01567} are Q-related, while {01267}
 and {0l67e} are Q*-related.14 In a Q-cyde adjacent sets are Q-
 related, with a special proviso for those trichords that may be
 described by the sequence of step intervals <abc>, with a, b, c
 distinct, (e.g., {013} trichords, described by the sequence of step
 intervals <129>). It is easy to see that such trichords support three
 possible Q-relations, but only two will be allowed to appear
 within a given Q-cycle. Thus, if the cycle proceeds by moving
 one pc to effect the exchange of intervals a and b, and then by
 moving another pc to effect the exchange of b and c, it may not
 also proceed by exchanging a and c.

 The unary transformation that maps one pc-set in a set class to
 a Q-related member of the class is an instance of a Cohn function,
 a yet more general construction defined by Lewin. Q-cyclic set

 ^Enumerated in Cohn, "Maximally Smooth Cycles," 16. In Figure 4, the P-
 relations are conceptualized as contextually defined inversions, mapping
 adjacent sets to each other. The arrows here and in later figures are shown as
 unidirectional only to emphasize the notion of a cycle.

 14The distinction between Q and Q* may be visualized in topological
 terms: a transformation between Q-related sets is smooth, involving stretching

 the set or sliding a note, whereas a transformation between Q*-related sets
 requires a tear, cutting a note from one place and pasting it elsewhere. The
 general distinction will be left here at the level of metaphor, but with the
 appropriate definitions in place, the distinction is a fundamental one in
 topology, which treats transformations of the former type, those that are
 smooth, i.e., "topological," as opposed to those of the latter type.
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 classes have a number of interesting concomitant properties,
 relating to organization in terms of generic and specific interval
 measure.15 The Q-cycles themselves may be given multiple
 interpretations, depending on the analytical context. 16

 Figure 4. Cohn s non-trivial P-cycles

 a. harmonic triad 3-11

 {037} -£-> {047} -*-> {e47} -^ {e48} -£-> {e38} -^ {038} -£-> {037}

 b. usual pentatonic 5-35

 {02479} -^{e2479}-^{e2469} . . . JL^. . . {02579} -^{02479}

 c. usual diatonic 7-35

 {013568t}-^-*{013578t} . ..-£->. . . {el3568t}-^{013568t}

 d. complement of harmonic triad 9-11

 {01235679t}A{01235689t} . . . A . .{01245679t}A{01235679t}

 15Described in David Clampitt, "Pairwise Well-formed Scales."
 16For those familiar with the notion of a Generalized Interval System (GIS),

 defined in David Lewin, Generalized Musical Intervals and Transformations,
 (New Haven and London: Yale University Press, 1987), the pitch-class sets
 comprising a P- or Q-cycle can generally be construed as a GIS in three ways: as
 a commutative GIS with an associated cyclic group, and an interval function
 that measures intervallic distance in terms of distance along the P- or Q-cycle;
 and as a (generally) non-commutative GIS, with the associated group that acts
 on the sets in a simply transitive way construed either as a subgroup of the
 T^/In group, or as a group of contextually defined operations. The triple
 description that these GIS structures afford underlies the transformational
 networks presented below in the Webern analysis. For more information and
 discussion, see Clampitt, "Pairwise Well-formed Scales," 24-36; idem,
 "Alternative Interpretations of Some Measures from Parsifal? Journal of Music
 Theory 42/2: 321-34; passim.
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 The three minimal pure all-small octachords each contain
 heptachords that support P- or Q-cycles. In the case of 8-23,
 since it is generated by the perfect fifth, two of its heptachordal
 subsets are diatonic sets, which participate in a P-cycle, as we have
 seen. The 7-note subsets of an octatonic set are all of the same set

 class, 7-31. As Figure 5 shows, these heptachordal subsets form a
 Q-cycle of length 8 (alternately P- and Q-related subsets: strictly
 speaking, the Q- relation includes the P-relation). 17

 Figure 5. The Q-cycle through the 7-pc subsets (of set class 7-31) of
 an octatonic set, given 8-28 represented by {0134679t}

 {0 1 34679} -Q* {t 1 34679} -^ {tO34679} -^>{t0 1 4679} -^

 {tO 1 3679} -^> {tO 1 3479} -^-> {tO 1 3469} -^ {tO 1 3467} -^->

 {0134679}

 The 7-note subsets of a representative of 8-9 fall into two
 classes of four: four each in 7-7 or 7-19. The four 7-7 sets

 participate in a Q-cycle as shown in Figure 6; the four 7-19 sets
 do not, but they pair up into two P-related couples, displayed in
 Figure 7. Finally, dropping the requirement that identity of set
 class be preserved but maintaining motion of a single pc by icl (I

 17Again, these eight sets form the elements of a GIS in three ways. From
 one perspective that takes the existence of the Q-cycle as primary, the group
 acting on these sets is taken to be the cyclic group of order 8, and intervallic
 distance is measured in terms of the number of pitch classes moved or turned
 over as one proceeds through the cycle. From another perspective, the subgroup
 of order 8 of the fullTjsj/lN group, consisting of elements To>T3,T6,T9 and
 1 1 , 1 4, 1 7, 1 io> is construed as acting on the seven-note sets themselves, with the

 interval between sets related by I \ , for example, apprehended by the ear
 between all and only sets for which pcs 0 and 1 (or 6 and 7) exchange. (The
 same subgroup of order 8, but understood as acting on individual pitch-classes,
 also forms a GIS associated with the eight pitch classes of the octatonic pitch-
 class set {01 34679t}.) The two contextually defined inversions also generate a
 group of order 8, acting on the heptachordal sets, where the interval is a
 measure of changes in configuration that take one heptachord to another.
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 will call this the R- relation), the eight 7-pc subsets of a
 representative of 8-9 participate in a cycle alternating P-, Q-, and
 R- relations, shown in Figure 8. All three relations are special cases
 of Forte's Rp. 18

 Figure 6. The Q~cycle through 7-7

 {0123678}-^{0125678}-^{012567e} -^>{0l4567e} . . ^>. . .

 {1236789}-^{0123678}

 Figure 7. The two P -related pairs of set class 7-19 in 8-9, given

 8-9 represented by {01236789}

 {0123679}<-^>{0123689}

 {01 36789} ^-> {0236789}

 Figure 8. The cycle of 7-pc subsets of 8-9: {01236789}

 {0136789}-^{0236789}-^{1236789}-^{0123678}-^>

 {0 1 23679}-^ {0 1 23689} -^ {0 1 23789} -^> {0 1 26789}-^->

 {0136789}

 Table 3 summarizes the information on P- and Q-cyclic sets
 that are maximal proper subsets within minimal sets. Eleven of
 the nineteen larger minimal sets include subsets with cardinality
 one less that support cycles of unary transformations. Six of the
 eight non-trivial P- or Q-cyclic sets of cardinality 6 or greater are
 maximal proper subsets of one or more minimal sets.

 18 Allen Forte, The Structure of Atonal Music (New Haven and London: Yale
 University Press, 1973), 47.
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 Table 3. Immediate inclusion relations ofP- and Q-cyclic sets within
 minimal and pure minimal sets of cardinalities 7 to 12

 7-20 minimal D 6-Z44 Q-cyclic

 7-22 minimal D 6-Z44 Q-cyclic

 (no other non-trivial Q-cyclic hexachords)

 8-9 minimal pure all-small D 7-7 Q-cyclic

 8-16 minimal Z) 7-7 Q-cyclic

 8-23 minimal pure all-small D 7-35 P-cyclic

 8-26 minimal D 7-35 P-cyclic

 8-27 minimal Z) 7-31 Q-cyclic

 8-28 minimal pure all-small D 7-31 Q-cyclic

 (7-5 is the only other non-trivial Q-cyclic heptachord)

 10-5 minimal D 9-11 P-cyclic, D 9-5
 Q-cyclic

 10-6 minimal Z> 9-5 Q-cyclic

 (no other non-trivial Q-cyclic nonachords)

 12-1 (aggregate) minimal D 11-1 P-cyclic (trivially)
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 Transformations in Webern's Op. 5, No. 4

 Webern's op. 5, no. 4 is an example of a work in which the set
 8-9 functions as a background or source set, as confirmed in a
 number of analyses. 19 (This is, of course, one of the most often
 analyzed movements in the atonal literature.) We will see that
 networks and chains involving P- and Q-relations for subsets of
 8-9 figure prominently. The unary transformations form the
 point of contact with the theoretical exposition of the Ramsey
 application, but otherwise the analysis is independent of that
 theoretical framework.

 The heptachord 7-19 is the set class of the seven-note rising
 figure that Lewin calls FLYAWAY,™ that articulates the ternary
 shape of the movement. 21 Figure 9 shows three Q-related 7-7
 sets in op. 5, no. 4, exemplifying the "slow turnover of pitch
 material" remarked on by Beach.22 The set classes 7-7 and 5-7
 are the only non-trivial heptachord/pentachord complements that
 both support Q-cycles.23 The Q- and Q*-related 5-7 sets in
 Figures 10 and 1 1 and displayed on the score in Example 1 show
 how this sonority and these common-tone relationships pervade

 19Allen Forte, "A Theory of Set Complexes for Music," Journal of Music
 Theory 8/2 (1964): 136-83; David W. Beach, "Pitch Structures and the
 Analytical Process in Atonal Music: An Interpretation of the Theory of Sets,".
 Music Theory Spectrum 1 (1979): 7-22; Charles Burkhart, "The Symmetrical
 Source of Webern's Opus 5, no. 4," Music Forum 5 (1980): 317-34; Patricia Hall,
 "Letter to the Editor," Music Theory Spectrum 4 (1982): 163-67; Richard A.
 Kaplan, "Transpositionally Invariant Subsets: A New Set-Complex Relation,"
 Integral A (1990): 37-66; Richard S. Parks, "Pitch-class Set Genera: My Theory,
 Forte's Theory," Music Analysis 17/2 (1998): 206-26.
 20Lewin, Generalized Musical Intervals and Transformations, 188-89.
 21Most analysts have heard the form of the movement in terms of two (or

 three) introductory measures (characteristically ambiguous metrically and out-
 of-focus timbrally), followed by an A section. The seven-note rising figure in m.
 6 is heard as either a concluding gesture or as a transitional figure leading into
 the contrasting B section of mm. 7-10, followed by the gesture again and a
 compressed and revoked version of the canon from the A section, forming a
 varied repetition A', concluding again with the seven-note figure.
 22 Beach, "Pitch Structures," 19.

 ^he clusters 5-1 and 7-1 count as the trivial examples; the usual diatonic
 and pentatonic participate in P-cydes.
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 the outer sections of this movement. The Q-relation is the
 stronger relation, and is isolated in Figure 11. Each one of the last
 four sets in this chain is the Tl -transpose of the set two links prior

 to it, following the logical ordering of the sets (Figure 12). The
 Q-relation chain all but follows the chronological order of the
 piece (reversed only in the initial move; presently I will locate the
 structural downbeat of the movement at m. 4, point of departure
 for the chain); note also that the chain (exactly one quarter of a
 complete Q-cycle) ends when the turnover of pitch classes is
 complete, such that first and last sets are disjoint. The Q-chain
 thus functions in the much-commented-upon strategy of
 chromatic completion in the piece.

 Figure 12 shows some of the intervallic relationships in the
 GIS of the standard Tn/In group, acting on the twenty-four sets
 of the 5-7 set class. In particular, the intervallic relationship (16)
 between the third and fourth sets in the chain is the same as that
 between the first and last sets in the chain. In both relations, the

 pitch classes 1 1 and 7 exchange: in the former, the sets differ only
 in these pitch classes, whereas in the latter, the sets differ
 completely in their pitch-class constituents. Note that the index
 of inversion advances by one for each move along the Q-cycle.24

 24For students of Lewin's theory of Generalized Interval Systems, to pursue

 the multiple GIS descriptions discussed in notes 5 and 6 one might rewrite the
 transformations in Figure 12 in terms of the two distinct contextually defined
 transformations, Q3 and Q4, that participate in the chain of Q- related sets. Q3
 inverts a 5-7 set by preserving the (0167) tetrachord, sliding one note a minor
 third; Q4 inverts a 5-7 set by preserving the (0156) tetrachord, sliding one note
 a major third. The two contextually defined inversions together generate a
 group that acts in a simply transitive way on the elements of the set class 5-7,
 just as the T^j/In group does. These groups are isomorphic, and exemplify
 aspects of Lewin's GIS theory for non-commutative GISs. Each group forms
 the group of interval-preserving operations for the GIS associated with the
 other. For example, observing the symmetrical role of the 1 6 transformation in

 Figure 12, note that in the GIS associated with the TN/IN group,
 int((0156e) ,{01567() = l£ = int({045te}, {12678}) = int(Q4Q3{0156e(,
 Q4Q3 {01567(). (Left-functional orthography is the convention assumed here:
 aPPly Q3 flrst)
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 Example 1. Webern, op. 5> no. 4
 Sehr langsam zogernd im tempo

 am Steg am Steg arco

 PPP 5-7 4-9 "Z" hTj ^ ^lTni^^i)
 [con sordino]^ ~~J 7 ^ ± I* ^ \w/lr

 f ? 6-5 ?* ? 5-19 '
 ' fvln 21 I i •

 I

 I 4-9 I am|Steg ' FFF**~-*=l ^^
 I 5-7 |7-19 8-9, ' Tl

 verklingend

 *■' I 1 . '
 tempo nt. tempo

 ausserst ruhig ^7^ ^..p,... g... ^ ^E^ffE

 rW^iil 1 ^'^Sj^'JS o "" iteg flil:htig

 7-19

 T,(R ,
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 Figure 9. Three (^related 7-7 sets in op. 5, no. 4

 mm. 3-4/1 mm. 4/3-6/1 mm. 11-12/2

 (0l4567e} -^>{012567e}-^> {0125678}

 Figure 10. Q and Q* relationships among ten 5-7 sets in op. 5> no. 4

 / m-4 \ / vln2, vc \

 >{0456e} ^- Q
 / mm. 1-3 m.4

 Q/ vlns. 1&2, via vlns

 ▼ Q*
 {0156e} <
 m. 4/3-m. 5/1 /*m. 4/ 1st 8th \

 ^ \> {01567} < ^ ► {01267} ^
 m.4/3.5-m. 5/1.5 m. 5/1.5-m. 6/2 \

 vlnl, vla,vc vlnl, via, vc \ ^<

 \ \
 {01278}

 Identity Q m. 12/2. 5-m. 13/2 quintuplets
 vin2, via, vc

 {01567} {12678} ^
 m. 11/2.5-m. 12/1 m. 12/2.5

 all voices all voices
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 Figure 11. Chain of six (^related 5- 7 sets in op. 5, no. 4

 Figure 13 involves the relation of m. 4 to the subsequent
 appearances of the Flyaway gesture. I will give arguments from
 rhythm, pitch, and timbre for locating a structural downbeat in
 m. 4. The first observation concerns the metric ambiguity of the
 first three bars: there is no initial downbeat, nor is there a
 downbeat to m. 3; instead, a binary pulse is initially suggested by
 the alternation between the tremolos in the violins and the cello's
 E|>3. In m. 4, there are attacks on the downbeat in the outer

 voices. The soprano, here the second violin, is especially
 prominent because the texture clarifies, and because Webern
 marks it dufterst zart, differentiating it timbrally from the am Steg
 sound in the first three bars. Measures 4-5 then stabilize the triple
 meter, as Berry and Forte also observed.25-

 25 Wallace Berry, Structural Functions in Music (Englewood Cliffs, N. J.:
 Prentice-Hall, 1973; reprint, New York: Dover, 1980), 401; Allen Forte,
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 Figure 12. Network of six (^related 5-7 sets in op. 5, no. 4,

 displaying selected relationships in the non-commutative GIS of
 TN/IN operators acting on the 5-7 set class

 >{0456e}««

 I5/ mm. 1-3 ^^ m.4 \
 / vlns. 1&2, via ^ vlns \

 I / JX vlns. 1&2, via ^ vlns \ \
 {O156e} T T
 n.4/3-m.5/l '
 vln 1 , via, vc I

 ^{01567}^ - =
 m.4/3.5-m. 5/1.5 V m. 5/1.5-m. 6/2 I

 vdnl, via, vc vinl, via, vc /

 {12678} M
 m. 12/2.5
 all voices

 The argument from pitch concerns the articulation of various
 elements of the set complexes K, Kh, and Ki about 4-9/8-9. ^
 (The roster of Kh members is 3-5, 5-7, 5-19, 6-5, 6-Z6/Z38,
 6-7, 6-18, 6-30.) As the score shows, on the downbeat of m. 4,

 the lower voices play a form of set class 3-5, the sustaining voices
 play 4-9, and the whole quartet plays 5-7. The second violin
 plays a linear statement of 4-9, the T5 transform of the first

 "Aspects of Rhythm in Webern's Atonal Music," Music Theory Spectrum 2:90-
 109 [100-105].

 26The Ki set complex is defined in Kaplan, "Transpositionally Invariant
 Subsets."
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 violin's statement in m. 3, which itself linearizes the pitch content
 of the violins in m. 2 (labeled Z on the score).27 The complete
 pitch content of m. 4 forms an 8-9 set, which may be seen as the
 union of two P-related forms of 7-19 (the set class of Flyaway).
 (See Figure 13.) The initial statement of Flyaway in m. 6 is a
 linearization of the content of the first three eighth-notes of m. 4.

 If one replaces the viola's Fj4 tied into the downbeat of m. 4 by
 the second violin's F^4, the fourth eighth-note in the second
 violin's figure, that is equivalent to a shift from one form of 7-19
 to another, its P-related "ghost," so to speak. If this segmentation

 seems capricious, note that Fjj4 is the fixed element in a registral
 swap effected between the relevant pitches in m. 4 and m. 6:
 exclusive of the fixed Fj, the three highest pitches at the
 beginning of m. 4-C5, B5> and E5-are sent down one octave to
 form Flyaway in m. 6, while the three lower pitches-B [,4, C|4,
 and G3- are sent up in register. The P-related forms of 7-19 map
 onto each other under In. The registral swap is not In, but
 F4/Fj4 is a semitone axis of inversion for a pitch-space inversion
 corresponding to \\\, and F4 and Fjj4 are the notes that exchange
 in the P-relation. Note also that in the middle section, in mm. 7-

 9, the pitch set of the axial first violin melody maps onto itself
 under a pitch-space inversion corresponding to \\\. Finally, note
 that the form of Z (4-9) contained in the final statement of

 Flyaway, consisting of the notes Gj(4, D5> A5, and E|>6, to be
 discussed below, again maps onto itself under a pitch-space
 inversion around an F5/Fj|5 axis.28

 27There is a tradition for calling the 4-9: {01 67} tetrachord Z. When I refer
 to Z, I mean the pc-content of the violins in m. 2: {e056}. Other forms of Z will
 be labeled according to their transpositional/ inversional levels.

 ^In a June 14, 1995 letter, David Lewin notes a registrally-ordered Flyaway
 form: X\2 (cello m. 5), F2 (ibid.), G3 (viola m. 5), C4 (violin 1 m. 5), D4 (ibid.),
 and GI5 and B5 (violin 1 mm. 7-8). (This is T\\ of the m. 6 statement of
 Flyaway.) Lewin partially explains the detachment of the last two notes in this

 registral ordering by way of a "constructivist machine" discovered by Adam
 Krims, and refined by Lewin: One can generate the ordered Flyaway set by
 starting on what is to become its next-to-last note and cycling through the
 seven-note set produced by ascending 3, 2, 4, 2, 5, 2, 6 semitones, then rotating
 so that the first two notes become the last two notes.
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 Figure 13. Transformational network of forms of 7- 19 in op. 5> no. 4

 T0(F) <-^-> [In(F)]

 M| T5(F) II l7
 [I7(F)] «-p-* Ts(F)

 In the final two measures, two P-related forms of 7-19 are

 embedded in the I7- or Tg -related form of 8-9 found there. In
 Figure 13, To(F) is the initial form of 7-19 in m. 4 and is the
 content of Flyaway, and the P-related ghosts are shown in
 brackets. As the example shows, the relation between Flyaway, or
 F, and the ghost of T8 (F) is the same as that between the ghost
 of F and T% (F); this relation is precisely 1 7.

 The crucial instances of the gesture Flyaway have engaged the
 attention of several analysts, and in particular the question of why

 Webern chose the transpositional levels T5 and Tg arises. As
 Lewin remarks, a number of analysts have adduced "powerful set-
 theoretical rationales" for the viola's T5 transpositional level of
 Flyaway in m. 10. ^ For example, Perle has pointed out that the
 first four pitch classes in the first violin, C, E, Fj, B, appear as the
 first four notes of Flyaway.30 If we call this unordered set Y, then

 notes 3 through 6 of Flyaway are T7OO. Thus Y returns at its
 original transpositional level as notes 3 through 6 in T5 (Flyaway).
 Lewin points out that not only are sets Y and Z themselves
 saturated by ic5, but also that ic5 spans between the sets Y and Z
 in three ways. I would add that the four lowest notes of the
 ostinato accompaniment in the middle section, B, E, B[>, G[» form
 a Q*-related form of Y, and Z in m. 2 together with the E\, in the

 ^David Lewin, "An Example of Serial Technique in Early Webern," Theory
 and Practice 7/1 (1982): 40-43 [41].

 ^George Perle, Serial Composition and Atonality, 2nd. ed. (Berkeley and Los
 Angeles: University of California Press, 1962), 16-19.
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 cello forms a 5-19 set, the included complement of
 T5 (Flyaway).

 Yet the final T$ level of Flyway has seemed both peculiarly
 right and yet difficult to account for. Comparing Figures 13 and
 14, one can see that both 1 7 and Tg relations figure in these
 transformational networks. The Tg level of Flyaway that has
 seemed so problematic can be assimilated to the prominent 1 7
 level, supplementing Lewin's rationale, which is based solely on
 the serial properties of Flyaway. For additional evidence of the
 prominence of the I7 level and its association with the Tg level,
 consider the pizzicato chord on the third eighth of m. 12. This
 chord is a form of Z, i.e., 4-9, and together with the content of
 m. 11 forms 7-7, in particular the 1 7 transform of the set
 encompassing the material in and around m. 5. The m. 12 chord
 itself is a form of Z from m. 2, but what form? I agree with
 Lewin's cogent rationale for considering it to be Ts of Z, in that
 it is a literal pitch transposition, and of course the Ts(F) that
 follows immediately after it remains the primary question, but I
 think it is worth pointing out that this chord is also \j{Z), (as well
 as T2 and 1 1 , because of Z's symmetries).

 Figure 14 is a transformational network of forms of Z. The
 first statement of 8-9 in m. 4, labeled 8- 9p excludes pitch classes

 D, E|>, Gj, A. All of these pitch classes are included in the final
 statement of 8-9 (labeled 8- 92)> and in fact are all included in
 T8(F), deployed registrally with inversional symmetry about the

 F5/Fj5 axis, as discussed above. This particular form of 4-9 never
 appears as a unit during the piece; instead, the first pair D-Et
 appears in the first half of the piece, E(, as the second note and D
 as the next-to-last note in the first main section, and the
 chromatic is completed with the arrival of G# followed by A in
 the second half of the piece. The literal complement of 8-9 2 does
 appear in the piece, however: the linear statement of T5 (Z) in the
 second violin in m. 4.
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 Figure 14. Network of relations among forms of 4-9 in op. 5, no. 4

 T8or2

 Z > Tg(Z)
 m.2 <

 horl

 r7 || t, r5 || t7
 horl

 compl. 8-9 2 <

 m. 4 <

 T8or2 inm-4

 The tight coordination of set forms in this piece stems from
 the protean nature of the sets 4-9 and 8-9. The set {0,1,6,7} itself
 may be thought of as two semitone pairs separated by a tritone,
 or two tritones separated by a semitone, or two perfect fifths
 separated by a tritone. Thus, Boretz's analysis is organized about
 ordered pairs of perfect fifths separated by semitones, while
 Burkhart considers pairs of tritones separated by semitones, and
 Forte emphasizes the tritone saturation of the outer sections of
 the movement, by contrast with the ic4 emphasis of the middle
 section.31 The complementary set has even greater versatility, in a
 sense that may best be seen by comparison with the octatonic set.
 The octatonic has a remarkable property, observed also by
 Cohn,32 in that it may be partitioned into four disjoint pairs of
 any interval class. For example, the set {0134679t} contains four
 pairs spanning ic4: (0,4), (9,1), (3,7), (6,t). The set class 8-9
 admits this property for all interval classes except ic3. In a
 representative of set class 7-19, then, three disjoint pairs may be
 formed for each interval class except ic3, and in each case one

 31Bcnjamin Boretz, "Meta- variations, Part IV: Analytical Fallout (I),"
 Perspectives of New Music 11/1 (1972): 146-223 [217-23]; Burkhart, "The
 Symmetrical Source," 320-23; Forte, "A Theory of Set Complexes," 176.

 32Richard Cohn, "Bart6k's Octatonic Strategies," Journal of the American
 Musicological Society 44/2 (1991): 262-300 [271].
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 pitch class remains unpaired. The one note that satisfies these five
 unpaired pitch classes uniquely completes a set in set class 8-9.
 Another way in which 8-9 forms a kind of one-off cousin to
 the octatonic 8-28 is the small size of its set complexes. Half of
 the eight members of its Kh complex figure in the analysis given
 above; only the octatonic has a smaller Kh complex. The small Kh
 complex size for these set classes is a reflection of how highly
 symmetrical they are. The pairing of these octachordal classes is
 noteworthy in light of the pervasive octatonicism that Forte
 discovers in Webern's atonal music.33 It appears that Webern
 sometimes favored the octatonic's minimal pure all-small cousin.
 A movement where 8-28 and 8-9 confront each other and the

 analyst is the fourth of Webern's Bagatelles for String Quartet,
 op. 9. Forte makes the case for an octatonic reading of this
 movement, while Kabbash's segmentation suggests an orientation
 towards 8- 9.34

 The foregoing analysis has emphasized the importance of the
 highly symmetrical set class 8-9 in the fourth movement from
 Webern's op. 5. To return to the utility of minimal and pure
 minimal sets, the conditions imposed favor the selection of
 symmetrical sets. As we have seen, when the symmetry of each of
 the minimal pure all-small octachords and that of other minimal
 sets is disturbed by the removal of certain single notes, the
 resulting sets make available the sorts of strategies employed by
 Webern in this movement.

 The picture is not a neat one, however, because not all of the
 minimal sets have Q-cyclic subsets, and not all of those that do
 are symmetrical. The Ramsey formulations generally provide
 only a measure of what kinds of configurations, and how many
 thereof, must occur within a sufficiently large universe of
 possibilities. The minimal criterion, although a global property of

 33Allen Forte, The Atonal Music of Anton Webern (New Haven and London:
 Yale University Press, 1998).

 ^Forte, Atonal Music of 'Webern , 184-89; Paul Kabbash, "Aggregate-derived
 Symmetry in Webern's Early Works ," Journal of Music Theory 28/2 (1984): 225-
 50 [226-32].
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 a pitch-class set, comes down to a count of closely packed and
 maximally spread-out trichords. One can infer a fair amount of
 pitch-class information on just the basis of the trichordal subsets,
 as the late Steven Gilbert's 1974 paper demonstrates,35 and
 indeed the trichordal profile of a set, unlike the interval vector, is
 unique. Trichords form the basis for Forte's theory of pitch-class
 set genera.36 In a formulation by Ayrey, cited by Forte in a
 response, "the trichords project their distinctive intervallic (and
 harmonic) properties through the universe of sets."37 The Ramsey
 formulation projects a relative absence of 3-1 and 3-2 trichords,
 and of 3-12 trichords in combination with the all-small trichords.

 This leads to the complete exclusion of minimal sets from Forte's
 genus 5 (with trichordal progenitors 3-1 and 3-2), but
 surprisingly, perhaps, genus 4, derived from 3-12 alone, has on a
 proportional basis the largest constituency of minimal sets among
 the twelve genera. I omit further details on the distribution of
 minimal and/or pure minimal sets over the genera; its
 determination makes for an interesting exercise. The interaction
 between the various Ramsey applications and theories of pitch-
 class set genera is a possible avenue for futher investigation.

 Whatever the interpretation chosen for the application of
 Ramsey theory, a somewhat impressionistic profile of the universe

 of pitch-class sets will necessarily be drawn. Many questions about
 the profile studied here remain, and "why" questions, such as,
 "Why are all of the larger transpositionally invariant sets
 minimal?" may not be susceptible to resolution. While it would
 not do to overestimate the application of this tool, Ramsey
 theory may be viewed as one more wedge with which to pry apart
 the complications of the world of tones.

 35Steven Gilbert, "An Introduction to Trichordal Analysis," Journal of
 Music Theory 18/2 (1974): 338-62.

 ^Allen Forte, "Pitch-class Set Genera and the Origin of Modern Harmonic
 Species," Journal of Music Theory 32/2 (1988): 187-270.

 37Craig Ayrey, "Berg's 'Warme die Lufte' and Pc Set Genera: A Preliminary
 Reading," Music Analysis 17/2 (1998): 163-76 [167].
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