
 All Possible GZ-Related 4-Element Pairs of Sets, in All
 Possible Commutative Groups, Found and Categorized

 David Lewin

 1. Preliminaries and definitions.

 1.1 In an earlier work, I showed that 3-element "GISZ-
 related" sets cannot exist in a commutative GIS.1 I call two sets

 "GISZ-related" if they are not GIS-transpositions or GIS-
 inversions, each of the other, and if they span the same assortment
 ofGIS-intervals.

 1.2 This paper finds and categorizes all possible conditions
 under which 4-element GISZ-related sets may exist in a
 commutative GIS. To simplify the discussion, we shall change the
 setting from a commutative GIS to a commutative group. We shall
 refer to "GZ-related" sets in the group, instead of "GISZ-related"
 sets in the GIS.2

 David Lewin. 1997. "Conditions Under Which, in a Commutative GIS, Two 3-

 Element Sets Can Span the Same Assortment of GIS-Intervals; Notes on the Non-
 Commutative GIS in This Connection." Integral 11: 37-66.

 In Generalized Musical Intervals and Transformations [henceforth GMIT\ (New
 Haven: Yale University Press, 1987), I point out that the objects of any GIS can
 be labeled by the intervals of that System, in such a way that the interval from
 object s to object t is given by LABEL(s)~1LABEL(t) in the group of intervals
 (GMITy 31). In a commutative GIS, using additive notation for the
 (commutative) group of intervals, the interval from s to t can then be given by
 LABEL(t) - LABEL(s). In Lewin 1997 (4.1.2 and fn. 16, p. 56), I point out
 that - conversely - any group G can be used as the family of formal objects for a
 GIS, if we take the group of formal GIS-intervals to be G itself, and define int(s,t)

 to be s-1t. In a commutative GIS using additive notation for the (commutative)
 group, then, int(s,t) would be defined as t - s. The apparent leap in the main text
 here, from GIS theory to mathematical group theory, is thus not a weighty matter

 formally, despite the change in conceptual focus. Though motivated by music
 theory - specifically by a theoretical interest in GISZ-sets - the present paper can
 accordingly be read as a project in abstract mathematical group theory. So far as I
 know, the results reported are new music-theoretically as well as mathematically (I

 have consulted professional mathematicians in this regard). That is not surprising:
 mathematicians have not been much interested in musical "GISZ-sets," the

 corresponding mathematical "GZ-sets," or other kinds of "Z-setsM more generally.
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 78 Integral

 1.3 Definition: Let G be a commutative group. Let S = {p, q,
 r, s} be a 4-element set of group elements. By the n-transposition of
 S we shall mean the set of elements {n + p, n + q, n + r, n + s}. By
 the n-inversion of S we shall mean the set of elements {n - p, n - q,
 n - r, n - s}.

 1.4 Definition: Let G and S be as in (1.3). By the interval-
 assortment of S we shall mean the roster of the 12 non-zero

 "intervals" [q - p, p - q, r - p, p - r, r - q, q - r, s - p, p - s, s - q,
 q - s, s - r, r - s]. This is the roster of all non-zero group-
 differences that can be formed using the four members of S.

 1.4.1 Some intervals may occur more than once on the roster of
 1.4. For instance, in the additive group modulo 12, the set S = {0,
 2, 5, 6} generates the roster [2, 10, 5, 7, 3, 9, 6, 6, 4, 8, 1, 11].
 The interval 6 appears twice on this roster. In the same group, the
 set S = {0, 1, 2, 3} generates the roster [1, 11, 2, 10, 1, 11, 3, 9, 2,
 10, 1, 11]. The intervals 1 and 11 each appear three times on this
 roster; the intervals 2 and 10 each appear twice.3

 1.5 Definition: Let G and S = {p, q, r, s} be as in (1.3). Let V
 = {t, u, v, w} be a 4-element set of group elements from G. The
 sets S and V will here be called GZ-related when conditions 1.5.1
 and 1.5.2 below both obtain:

 1.5.1 V is neither an n-transposition nor an n-inversion
 of S (1.3), for any n in the group G.

 1.5.2 V has the same interval-assortment (1.4), en masse,
 as does S.

 1.5.3 Example: We saw in (1.4.1) that the set S = {0, 2, 5, 6}
 generates the roster [2, 10, 5, 7, 3, 9, 6, 6, 4, 8, 1, 11] in the
 additive group mod 12. Let V be the set {0, 5, 6, 8} within that
 group. We shall show that this S and this V are GZ-related. We
 compute the interval-assortment for V; it is [5, 7, 6, 6, 1, 11, 8, 4,
 3, 9, 2, 10]. The two rosters match, en masse: each roster lists

 Our "roster" idea is somewhat imprecise mathematically. For those readers who
 may be uncomfortable or curious, Lewin 1997 (1.2, p. 38) defines our "roster"
 more rigorously, as a certain mathematical function.

This content downloaded from 128.151.124.135 on Fri, 15 Mar 2019 14:53:31 UTC
All use subject to https://about.jstor.org/terms
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 interval 1 once, interval 2 once, ..., interval 5 once, interval 6
 twice, interval 7 once, ..., and interval 11 once. So (1.5.2) is
 satisfied. To see that (1.5.1) is also satisfied, we observe that S is

 "packed within a tritone"; hence any transposition or inversion of S
 can be "packed within a tritone." But V cannot be "packed within
 a tritone." So V cannot be any transposition or inversion of S.

 1.5.4 For future reference, it will be useful to note some features

 that pertain to the particular mod- 12 GZ-related sets S = {0, 2, 5,
 6} and V = {0, 5, 6, 8} of 1.5.3 above.

 1.5.4.1 S and V have 3 elements in common.

 1.5.4.2 S can be expressed as {0, 6, 5 - 3, 5}, while V can
 be expressed as {0, 6, 5, 5 + 3}.

 1.5.4.3 In this context, 2 = 5-3 while 8 = 5 + 3. We say
 that element 3 of the group is "of order 4": 4x3 = 0 mod 12, and
 Nx3^0 mod 12 for any positive number N < 4.

 1.5 A A The element 6 of the group is of order 2, and 6 is
 2x3.

 1.5.4.5 The element 5 of the group is not of order 2, and
 not a multiple of 3. Nor does 2x5 = 2x3 mod 12.

 2. Some further examples.

 2.1 Example: Let G be the additive group mod 8. For musical
 application, we can use G to model the 8 "time-points" or "beat-
 classes" corresponding to the various eighth-notes of a 4/4 measure,

 labeling them as time-point 0 (at the opening bar line) through
 time-point 7 (just before the closing bar-line).

 Let S be the set {0, 1, 3, 4}; let V be the set {0, 3, 4, 5}.
 We can think of S rhythmically, in our musical application, as
 "DEE duh - ta DAH

 measure); we can think of V as "DEE - - ta DAH duh - -" (repeated
 indefinitely, measure after measure).

 4 It is interesting that the two figures are combined, using their three common
 time-points, in the figure that governs the first-movement Allegro of Chopin's
 Piano Sonata in Bl» minor: "DEE duh - ta DAH duh - -".
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 S can be packed within a span of 4 "eighth-notes"; V
 cannot be. Hence V cannot be any transposition or inversion of S.
 (1.5.1) is satisfied.

 The interval-assortment of S is the roster [1, 7, 3, 5, 2, 6,
 4, 4, 3, 5, 1, 7].5 This roster lists twice the mod-8 intervals 1, 3, 4,
 5, and 7; the roster lists 2 and 6 once each. The interval-
 assortment of V is the roster [3, 5, 4, 4, 1, 7, 5, 3, 2, 6, 1,7]. This
 roster lists twice the mod-8 intervals 1, 3, 4, 5, and 7; the roster
 lists 2 and 6 once each. The two rosters are the same, en masse. So
 (1.5.2) is satisfied.

 (1.5.1) and (1.5.2) both being satisfied, we conclude that 5
 and V here are GZ-r elated 4-element sets.

 2.1.1 For future reference, it will be useful to note some features

 that pertain to the particular mod-8 GZ-related sets S = {0, 1,3, 4}
 and V = {0, 3, 4, 5} of 2.1 above.

 2.1.1.1 S and V have 3 elements in common.

 2.1.1.2 S can be expressed as {0, 4, 3 - 2, 3}, while V can
 be expressed as {0, 4, 3, 3 + 2}.6

 2.1.1.3 In this context, 1=3-2 while 5 = 3 + 2. The

 element 2 of the group is "of order 4": 4x2 = 0 mod 8, and N X 2
 ^ 0 mod 8 for any positive number N < 4.

 2.1.1.4 The element 4 of the group is of order 2, and 4 is
 2x2.

 2.1.1.5 The element 3 of the group is not of order 2, and
 not a multiple of 2. Nor does 2x3 = 2x2 mod 8.

 2.2 Example: Let G be the additive group mod 16. For
 musical application, we can use G to model the 16 "time-points" or

 We can "hear" all these intervals, in our rhythmic application, by allowing the
 figure to repeat indefinitely, measure after measure. In the ostinato, we will then

 hear the durations greater than 4, from one appearance of the figure, to its next
 appearance a measure later.

 The rhythmic figure from the Chopin sonata, "DEE duh - ta DAH duh - -",
 pointed out in fn. 4, supports this articulation of the overlapping time-point sets S

 and V in the ambient pitch structure. Time-points 0 and 4 of the common set
 {0,4} ("DEE" and "DAH") project the same pitch, Dk Time-point 3 - the "ta"
 common to both S and V - projects its own pitch, C. Time-point 1 =3-2, the
 "duh" of set S, projects the pitch Bl>; so does time-point 5 = 3 + 2, the "duh" of V.
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 GZ-Related 4-Element Pairs of Sets 8 1

 "beat-classes" corresponding to the various sixteenth-notes of a 4/4

 measure, labeling them as time-point 0 (at the opening bar line)
 through time-point 15 (just before the closing bar-line).

 Let S be the set {0, 1, 5, 8}; let V be the set {0, 5, 8, 9}.
 We can think of S rhythmically, in our musical application, as
 "TEE tuh - - | - ta - - | TAH

 measure after measure); we can think of V as "TEE

 TAH tuh - - | - - - - (repeated indefinitely, measure after
 measure).

 S can be packed within a span of 8 "sixteenth-notes"; V
 cannot be. Hence V cannot be any transposition or inversion of S.
 (1.5.1) is satisfied.

 The interval-assortment of S is the roster [1, 15, 5, 11, 4,
 12, 8, 8, 7, 9, 3, 13]. This roster lists twice the mod- 16 interval 8;
 the roster lists 1, 3, 4, 5, 7, 9, 11, 13, and 15 once each; the roster
 does not list 2, 6, 10, or 14. The interval-assortment of V is the
 roster [5, 11, 8, 8, 3, 13, 9, 7, 4, 12, 1, 15]. This roster lists twice
 the mod-16 interval 8; the roster lists 1, 3, 4, 5, 7, 9, 11, 13, and
 15 once each; the roster does not list 2, 6, 10, or 14. The two
 rosters are the same, en masse. So (1.5.2) is satisfied.

 (1.5.1) and (1.5.2) both being satisfied, we conclude that S
 and Vhere are GZ-r elated 4-element sets.

 2.2.1 For future reference, it will be useful to note some features

 that pertain to the particular mod-16 GZ-related sets S = {0, 1, 5,
 8} and V = {0, 5, 8, 9} of 2.2 above.

 2.2.1.1 S and V have 3 elements in common.

 2.2.1.2 S can be expressed as {0, 8, 5 - 4, 5}, while V can
 be expressed as {0, 8, 5, 5 + 4}.

 2.2.1.3 In this context, 1 = 5-4 while 9 = 5 + 4. We see
 that element 4 is "of order 4": 4x4 = 0 mod 16, and Nx4/0

 mod 16 for any positive number N smaller than 4.
 2.2.1.4 The element 8 of the group is of order 2, and 8 is

 2x4.

 2.2.1.5 The element 5 of the group is not of order 2, and
 not a multiple of 4. Nor does 2x5 = 2x4 mod 16 in the group.
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 3. A method of generating 4-element GZ-sets with 3 common
 elements, that works within some commutative groups.

 3.1 We have now studied three specific examples of GZ-
 related 4-element sets that have 3 group-elements in common. In
 the three examples we see a pattern emerging from (1.5.4), (2.1.1),
 and (2.2.1).

 In each case, we have a commutative group G, and an
 element g of order 4 within that group. (In 1.5.4, g = 3 mod 12; in
 2.1.1, g = 2 mod 8; in 2.2.1, g = 4 mod 16.)

 In each case, there is an element k of the group which is
 not of order 2, not a multiple of g, and which does not satisfy 2k =
 2g. (In 1.5.4, k = 5 mod 12, which is not of order 2, not a
 multiple of 3, and does not satisfy 2x5 = 2x3 mod 12. In 2.1.1,
 k = 3 mod 8, which is not of order 2, not a multiple of 2, and does
 not satisfy 2x3 = 2x2 mod 8. In 2.2.1, k = 5 mod 16, which is
 not of order 2, not a multiple of 4, and fails to satisfy 2x5 = 2x4
 mod 16.)

 In each case, we have a 4-element set S = {0, 2g, k - g, k},
 and a 4-element set V = {0, 2g, k, k + g}. In each case, the sets S
 and V, which share the 3 common elements 0, 2g, and k, are GZ-
 related.

 In the present section of this paper, we shall show that the
 above method of constructing GZ-related 4-element sets S and V
 will work in a certain class of commutative groups. It will work,
 specifically, in any commutative group that contains some element
 g of order 4, and also some element k that is not a multiple of g,
 and not of order 2, and does not satisfy 2k = 2g.7

 The method interacts cogently with the results of Stephen Soderberg in "Z-
 related Sets as Dual Inversions, "Journal of Music Theory 39 (1995): 77-100. The
 work of our section 3, and of section 4 following, is less general in some ways than

 the work of Soderberg, and more general in other ways. It is less general because it

 concerns GZ-related sets of cardinality 4 only, and among those, only sets that
 have T-or-I related 3-element subsets. (Other 4-element GZ-related sets will be

 taken up in section 5 and following.) Soderberg's results apply to sets of
 cardinalities other than 4; his methods can also be used to find not just pairs of
 GZ-related sets, but also triples of such sets, etc. The work of our sections 3 and 4

 is more general than Soderberg's in these respects: we have (in Theorem 4.3)
 completely necessary and sufficient conditions for 4-element sets with T-or-I

This content downloaded from 128.151.124.135 on Fri, 15 Mar 2019 14:53:31 UTC
All use subject to https://about.jstor.org/terms



 GZ-Related 4-Element Pairs of Sets 83

 3.2 Theorem: Let G be a commutative group that (i) contains an
 element g of order 4, and (ii) also contains an element k, not of order
 2, that is not a multiple ofg, and does not satisfy 2k = 2g. Define S to

 be the set /ft 2g k-g kj. Define Vto be the set /ft 2g k, k + gf.
 Then S and V are GZ-r elated 4-element sets with 3 common

 elements.

 PROOF: Set S = {0, 2g, k - g, k} does indeed have 4
 distinct members, and is therefore a "4-element set." 0 and 2g are
 distinct, since g is of order 4, not of order 2. k - g and k are each
 distinct from both 0 and 2g, since k is not a multiple of g. k - g is
 distinct from k, since g is not 0.

 Likewise, V has 4 distinct members. Evidently S and V
 share the 3 common elements 0, 2g, and k.

 To show that S and V are GZ-related, we must show (i)
 and (ii) below:

 (i) V and S have the same interval-assortment.

 (ii) V is not a transposition or an inversion of S.

 3.2. 1 Proof of (i) above.
 Some intervals of S are formed by differences among the

 common elements 0, 2g, and k. Those intervals will necessarily
 match, en masse, the intervals of V formed by differences among
 those same common elements. So it suffices to show that the

 intervals of S formed by differences involving k - g are the same, en

 masse, as the intervals of V formed by differences involving k + g.
 We must therefore show that the roster [k - g, g - k, (k - g) - 2g,
 2g - (k - g), (k - g) - k, k - (k - g)] matches, en masse, the roster
 [k + g, -(k + g) (k + g) - 2g, 2g - (k + g), (k + g) - k, k - (k + g)] .
 Writing "MEM" for "matches, en masse\ we will show that [k - g,
 g - k, (k - g) - 2g> 2g - (k - g), (k - g) - k, k - (k - g)] MEM
 [k + g)-(k + g),(k + g)-2g,2g-(k + g)>(k + g)-k)k-(k + g)].

 related 3-element subsets to be GZ-related, and it does so within commutative

 groups in all generality. Soderberg's results are formulated only for finite cyclic
 groups (integers mod N). In section 5 and beyond we shall discover and
 categorize all possible GZ-tetrads in all possible commutative groups; this goes
 farther than the tetrads that arise from Soderberg's Dual Inversions in finite cyclic

 groups.

This content downloaded from 128.151.124.135 on Fri, 15 Mar 2019 14:53:31 UTC
All use subject to https://about.jstor.org/terms



 84 Integral

 Simplifying the algebra on those rosters, we must show
 [k - g, g - k, k - 3g, 3g - k, -g, g] MEM [k + g, -(k + g), k - g,
 g - k, g, - g] . k - g and g - k appear on both rosters; so do g and
 -g. It suffices to show that [k - 3g, 3g - k] MEM [k + g, -(k + g)].
 And this is true because 3g = -g, g being of order 4.

 Thus S and V do indeed have the same interval-
 assortment. We have now to show that V is neither a

 transposition, nor an inversion of S.

 3.2.2 Proof of (ii) above.
 3.2.2.1 We show first that V cannot be a transposition of

 S. The n-transposition of set S (1.3) is the set {n, n + 2g, n + k - g,
 n + k}. Suppose this set were in fact V = {0, 2g, k, k + g}. Then n,
 which is a member of S-transposed, would have to be a member of
 V = {0, 2g, k, k + g}. We distinguish four possible cases. Case 1:
 n = 0. Case 2: n = 2g. Case 3: n = k. Case 4: n = k + g. We take
 up each of these cases in turn, and show that none can happen.

 Case 1 : n = 0. Then S-transposed (by 0) is simply S. But
 S cannot be V. k - g is a member of S, and k - g is distinct from
 each of the common elements 0, 2g, and k. If S were the same as
 V, then k - g (in S) would have to be the same as k + g (in V). But
 in that case, -g would be g, and g would be of order 2, not order 4.
 This is not so. So Case 1 cannot happen.

 Case 2: n = 2g. Then S-transposed, which is {n, n + 2g,
 n + k - g, n + k}, would be {2g, 0, g + k, 2g + k}. This would have
 to be the same set as V = {0, 2g, k, k + g}. Then 2g + k (of S-
 transposed) would have to equal k (of V). Then 2g would have to
 be 0, and g would be of order 2, not order 4. So Case 2 cannot
 happen.

 Case 3: n = k. Then S-transposed, or {n, n + 2g, n + k - g,
 n + k}, would be {k, k + 2g, 2k - g, 2k}. This would have to be the
 same set as V = {0, 2g, k, k + g}. Then the element k + 2g, a
 member of S-transposed, would have to be some member of V,
 either 0 or 2g or k or k + g. But none of these can happen, k + 2g
 cannot be 0 because k is not a multiple of g. (2g = -2g.) k + 2g
 cannot be 2g because k is not 0. k + 2g cannot be k because 2g is
 not 0. (g is of order 4, not order 2.) k + 2g cannot be k + g
 because g is not 0. So Case 3 cannot happen.
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 Case 4: n = k + g. Then S-transposed, which is {n, n + 2g,
 n + k - g, n + k}, would be {k + g, k + 3g, 2k, 2k + g}. This would
 have to be the same set as V = {0, 2g, k, k + g}. Then the element
 k + 3g, a member of S-transposed, would have to be some member
 of V, either 0 or 2g or k or k + g. But none of these can happen,
 k + 3g cannot be 0 or 2g because k is not a multiple of g. k + 3g
 cannot be k because 3g is not 0. (g is of order 4.) k + 3g cannot be
 k + g because 2g is not 0. (g is not of order 2.) So Case 4 cannot
 happen.

 Since none of Cases 1 through 4 can happen, V is not a
 transposition of S.

 3.2.2.2 Now we show that V cannot be an inversion of S.

 The n-inversion of set S (1.3) is the set {n, n - 2g, n - k + g, n - k}.

 Suppose this set were in fact V = {0, 2g, k, k + g}. Then n, which is
 a member of S-inverted, would have to be a member of V = {0, 2g,

 k, k + g}. We distinguish four possible cases. Case 1: n = 0. Case
 2: n = 2g. Case 3: n = k. Case 4: n = k + g. We take up each of
 these cases in turn, and show that none can happen.

 Case 1: n = 0. Then S-inverted, i.e., {n, n - 2g, n - k + g,
 n - k}, would be {0, -2g, g - k, -k} = {0, 2g, g - k, -k}. If this
 were the same set as V = {0, 2g, k, k + g}, then {g - k, -k} would be

 the same 2-element set as {k, k + g}. -k cannot match k, since k is
 not of order 2. So -k must match k + g, and then g - k must
 match k. That is, we would have both -k = k + g and g - k = k.
 Then g = -2k, and also g = 2k. Then -g = g, and g would be of
 order 2, not order 4 - which was supposed not the case. So Case 1
 cannot happen.

 Case 2: n = 2g. S-inverted, which is {n, n - 2g, n - k + g,
 n - k}, would be {2g, 0, 3g - k, 2g - k}. If this were the same set as
 V = {0, 2g, k, k + g}, then {3g - k, 2g - k} would be the same 2-
 element set as {k, k + g}. 3g - k cannot match k + g, for then 2g =
 2k, which was supposed not the case. So 3g - k must match k, and
 then 2g - k must match k + g. We would have both 3g - k = k and
 2g - k = k + g. Then 3g = 2k and also g = 2k. But then 3g = g,
 and 2g = 0, and g is of order 2, not order 4. So Case 2 cannot
 happen.

 Case 3: n = k. Then S-inverted, or {n, n - 2g, n - k + g,
 n - k}, would be {k, k - 2g, g, 0}. If this were the same set as V =
 {0, 2g, k, k + g}, then {k - 2g, g} would be the same 2-element set
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 as {2g, k + g}. But k - 2g cannot be 2g, since then we would have k
 = 4g = 0. Nor can k - 2g be k + g, for then we would have 3g = 0,
 and g would not be of order 4. So Case 3 cannot happen.

 Case 4: n = k + g. Then S-inverted, which is {n, n - 2g,
 n - k + g, n - k}, would be {k + g, k - g, 2g, g}. If this were the
 same set as V = {0, 2g, k, k + g}, then {k - g, g} would be the same
 2-element set as {0, k}. But neither k - g nor g can be 0. So Case 4
 cannot happen.

 Since none of Cases 1 through 4 can happen, V is not an
 inversion of S.

 Thus 3.2.2.2 is proved; 3.2.2 is thereby proved; and
 Theorem 3.2 itself is proved.

 3.3 Corollary: Let G be a commutative group that (i) contains an
 element g of order 4, and (ii) also contains an element k, not of order
 2, that is not a multiple ofg, and does not satisfy 2k = 2g Let S be the

 set OP({0y 2g, k-g, kj), where OP is some T-or-I operation. Let V be
 the set OP'ffO, 2g, k, k +gf), where OP' is some T-or-I operation.

 Then S and V are GZ-related 4-element sets containing
 respective 3-element subsets that are T-or-I related.

 4. The converse of Corollary 3.3.

 4.1 Corollary 3.3 gives us a very general method, in certain
 commutative groups, of constructing 4-element GZ-related sets
 that have T-or-I related 3-element subsets. We shall now prove a
 remarkable theorem: the method of (3.3) is in fact exhaustive. That

 is, if S and V are GZ-related 4-element sets in any commutative
 group, and if S and V have T-or-I related 3-element subsets, then S

 and V must have the form described in Corollary 3.3, for suitable
 choices ofg, k, OP, and OP'.

 4.2 Theorem: Let G be a commutative group. Suppose that S
 and V are 4-element sets in G that are GZ-related, and that have

 T-or-I related 3-element subsets. Then there exist elements g and k of
 G, and T-or-I operations OP and OP', such that

 (i) g is of order 4, and
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 (it) k is not a multiple ofg, nor is k of order 2, nor does 2k

 equal 2g, and
 (Hi) S = OP({0, 2g k-g, k})> and also V= OP' ({0, 2gi k,

 k+g}).

 PROOF: By assumption, S and/or V can be transposed or
 inverted so as to have three common members. Let us imagine S
 and V already so transformed. By a further transposition of each,
 we may suppose that the group element 0 is one of the three
 common members. Let us provisionally denote by a and b the
 non-zero common members of S and V (suitably transformed as
 above). Then, for some group-elements s and v, we may suppose S
 to be expressed as {0, a, b, s}, while we may suppose V to be
 expressed as {0, a, b, v}.

 By assumption, S and V have the same interval-assortment.
 Since the 3-element set {0, a, b} contributes the same intervals to
 the S-roster, as it does to the V-roster, the intervals of S that involve

 s must match, en masse, the intervals of V that involve v. That is

 (writing "MEM" for "match, en masse"), we must have [s, - s, s - a,
 a - s, s - b, b - s] MEM [v, - v, v - a, a - v, v - b, b - v] .

 Since S and V are different sets, v does not match s on

 these rosters. We distinguish three possibilities. Possibility 1: v
 matches -s. Possibility 2: v matches a - s or b - s. Possibility 3: v
 matches s - a or s - b.

 4.2.1 Possibility 1: v matches -s, on the rosters [s, -s, s - a, a - s,
 s - b, b - s] and [v, - v, v - a, a - v, v - b, b - v] . We show that if
 this is so, then Theorem 4.2 is true.

 Supposing v = -s, then -v = s, and the 4-element rosters
 [s - a, a - s, s - b, b - s] and [v - a, a - v, v - b, b - v] must MEM.

 v - a of the V-roster cannot equal s - a of the S-roster, since v and
 s are distinct. So we may distinguish three cases. Case 1 : v - a of
 the V-roster equals a - s of the S-roster. Case 2: v - a of the V-
 roster equals b - s of the S-roster. Case 3: v - a of the V-roster
 equals s - b of the S-roster. We shall show that neither Case 1 nor
 Case 2 can occur, and that if Case 3 occurs, the theorem is true.

 Case l:v-a = a-s. Then a - v = s - a, and we can prune
 the 4-element rosters to 2-element rosters. Thus: [s - b, b - s]

This content downloaded from 128.151.124.135 on Fri, 15 Mar 2019 14:53:31 UTC
All use subject to https://about.jstor.org/terms



 88 Integral

 MEM [v - b, b - v]. v - b cannot match s - b, since v and s are
 distinct. So v - b must match b - s, and b - v must match s - b.

 In sum, we have v + s = 2a (the assumption of Case 1), and
 v + s = 2b (since v - b = b - s). But also v + s = 0 (the assumption
 of 4.2.1). So we have 2a = 2b = v + s = 0. In particular, -a would
 be a, and -b would be b. But then the 0-inversion of S, that is {-0,
 -a, -b, -s}, would be the set {0, a, b, v}, which is in fact V. And
 that contradicts the supposition that S and V are GZ-related. Case
 1 cannot happen.
 Case 2: v - a = b - s. Then v + s = a + b. But (4.2.1) has

 supposed that v = -s. Hence 0 = v + s = a + b. So b = -a. Then
 the 0-inversion of set S is {-0, -a, -b, -s}, which is {0, b, a, v},
 which is V. But then, S and V being inversions of each other, the
 sets are not GZ-related. Case 2 cannot happen.

 Case 3:v-a = s-b. We show that in this case the

 theorem is true. Now (4.2.1) has supposed that v = -s, and
 therefore that the 4-element rosters [s - a, a - s, s - b, b - s] and

 [v - a, a - v, v - b, b - v] must MEM. Since Case 3 supposes that
 v - a = s - b, we have a - v = b - s, and the 2-element rosters [s - a,

 a - s] and [v - b, b - v] must match, en masse. We distinguish
 Subcase 3.1:s - a = b - v; and Subcase 3.2: s - a = v - b.

 Subcase 3.1: s - a = b - v. Then s + v = a + b. And the

 supposition of (4.2.1) is that v = -s. So 0 = s + v = a + b; v = -s and
 b = -a. Then the 0-inversion of set S is {-0, -a, -b, -s}, which is
 {0, b, a, v}, which is V. But then, S and V being inverted forms of
 each other; the sets are not GZ-related. Subcase 3.1 cannot

 happen.
 Subcase 3.2: s - a = v - b. So v - s = b - a. But also v - s

 = a - b (the supposition of Case 3). Then v - s is its own negative.
 Let us set v - s = x. Then

 (i) x is its own negative, and
 (ii) x = v-s = s-v = b-a = a-b. But s = -v (4.2.1). So
 (iii) x = v-s = s-v = 2v = 2s = b-a = a-b.

 Since 2s = x and 2x = 0 (via (i)) but x is not itself 0, it follows that
 4s = 0 but 2s is not 0. Hence

 (iv) s is of order 4.

 So v = - s (4.2.1) = 3s (by (iv) above). Then a ^ 0, nor does a = s
 (since a and s are distinct within 4-element set S), nor does a = 3s
 (since a and v are distinct within 4-element set V). Nor can a = 2s,
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 for then a = x (by (iii) above), and so -b = 0 (via (ii) above), and so
 b = 0, and b is not distinct from 0 within 4-element set S. Thus

 (v) a is not a multiple of s.
 If 2a were 0, then, since b - a = a - b ((iii) above), 2b would also be
 0. Then a would be -a and b would be -b. Then the 0-inversion

 of S, the set {-0, -a, -b, -s}, would be {0, a, b, v}, which is V. So S
 and V would be inversions of each other, not GZ-related. So

 (vi) 2a is not 0.
 If 2a were x, then x - a would be a, and then, since x = a - b ((iii)
 above), a would be -b. Then the 0-inversion of S, the set {-0, -a,
 -b, -s}, would be {0, b, a, v}, which is V. So S and V would be
 inversions of each other, not GZ-related. So

 (vii) 2a is not x; 2a is not 2s (via (iii) above).

 Let us define g as s; let us define k as a. Then g is of order
 4 ((iv) above), k is not a multiple of g ((v) above), nor is k of order
 2 ((vi) above), nor does 2k equal 2g ((vii) above.

 Let us define OP and OP' both to be a-inversion. Then

 OP({0, 2g, k - g, k}) is the a-inversion of {0, 2s, a - s, a}, which is
 {a - 0, a - 2s, a - (a - s), a - a}, which is {a, a - x, s, 0}, which (via
 (iii) above) is {a, b, s, 0}, which is S. And OP'({0, 2g, k, k + g}) is
 the a-inversion of {0, 2s, a, a + s}, calculated as {a - 0, a - 2s, a - a,

 a - (a + s)}, which is {a, a - x, 0, -s}, which (by (iii) above) is {a, b,
 0, v}, which is V. So all three requirements of the theorem obtain
 in this case. We have shown that, in Case 3, Subcase 3.2, the
 theorem is true.

 4.2.2 Possibility 2: v matches a - s or b - s, on the matching
 rosters [s, -s, s - a, a - s, s - b, b - s] and [v, -v, v - a, a - v, v - b,

 b - v]. We show that this cannot happen.
 Since the situation is symmetrical in the symbols a and b,

 we may assume that
 (i) v matches a - s.

 Then -v = s - a, and we can prune the rosters: [s, -s, s - b, b - s]
 MEM [v - a, a - v, v - b, b - v]. Since v is assumed to match a - s,
 then s must match a - v. And -s must match v - a. So we can

 prune the rosters even more: [s - b, b - s] MEM [v - b, b - v]. It
 follows that s - b cannot match v-b, since s and v are distinct.
 Hence

 (ii) s - b matches b - v.
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 (i) above tells us that s + v = a. (ii) above tells us that s + v = 2b.
 All told, then,

 (iii) s + v = a = 2b.

 The a-inversion of set S is then the set {a - 0, a - a, a - b, a - s},
 which, via (iii) above, is {a, 0, b, v}, which is set V. But then S and

 V are inversions of each other; they cannot be GZ-related. So
 Possibility 2 cannot happen.

 4.2.3 Possibility 3: v matches s - a or s - b, on the matching
 rosters [s, -s, s - a, a - s, s - b, b - s] and [v, -v, v - a, a - v, v - b,
 b - v]. We show that if this is so, then Theorem 4.2 is true.
 Without loss of generality, we can suppose that

 (i) v = s - a.

 Then, pruning the matching rosters above accordingly, we see that
 [s, - s, s - b, b - s] MEM [v - a, a - v, v - b, b - v]. Matching
 these pruned rosters, we see that s must match one of v - a, a - v,
 v - b, or b - v. But s cannot match either a - v or b - v: this would

 entail the relationship "v = a - s or b - s," a relationship already
 ruled out as Possibility 2 above.

 So s must match either v - a or v - b. We distinguish the
 two cases: Case 1 : s = v - a; Case 2: s = v - b.

 Case 1: s = v - a. In pruning the matching 4-element
 rosters [s, - s, s - b, b - s] and [v - a, a - v, v - b, b - v] , we infer
 that [s - b, b - s] MEM [v - b, b - v]. However, s - b cannot
 equal v - b: s and v are distinct. Hence

 (ii) s - b = b - v, and therefore v + s = 2b.

 Then 2b = v + s (via (ii)) = v + (v + a) (via (i)) = 2v - a. So
 (iii)a = 2(v-b).

 Now Case 1 supposes that s = v - a. Then s = v - a=(s - a) - a
 (via (i) above), which equals s - 2a. Hence

 (iv) 2a = 0.

 Thus, by (iii) and (iv), 4(v - b) = 2a = 0. But 2(v - b), which
 equals a (iii), is not zero. Hence

 (v) v - b is of order 4.

 Set g = v - b, k = b. Then g is of order 4 ((v) above), v = b + g =
 k + g, and s = v - a (Case 1 assumption) = v - 2g (via (iii)), which is
 (k + g) - 2g, which is k - g. And a = 2g, via (iii).

 Thus S = {0, a, b, s} = {0, 2g, k, k - g}, while V = {0, a, b,
 v} = {0,2g,k,k + g}.
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 To show that Theorem 4.2 holds true in this event, then,

 we need only show that k is not a multiple of g, that k is not of
 order 2, and that 2k is not 2g.

 We show that k is not a multiple of g. 0 and b are distinct
 members of S, so b is not 0. Thus k is distinct from 0 (which is

 4g).
 v and a are distinct members of V, so v must be distinct

 from 2(v - b) (via (iii) above), so 0 is distinct from v - 2b, so b is

 distinct from v - b; i.e., k is distinct from g.
 b and a are distinct members of S, so b must be distinct

 from 2(v - b) (via (iii) above), so k is distinct from 2g.
 v and 0 are distinct members of V, so 0 is not -v, so b is

 not b - v, so k is not - g. Since g is of order 4 (via (v) above), - g is

 3g. So k is not 3g.
 In sum, k is neither 0, nor g, nor 2g, nor 3g. k is, indeed,

 not a multiple of g.

 We show that k = b is not of order 2. According to (ii)
 above, v + s = 2b. So if k = b were of order 2, we would have v + s

 = 0, and v would equal -s. 2b being 0, b would equal -b. Since a
 is of order 2 ((iv) above), a would be -a. Then the 0-inversion of S,
 which is the set {-0, -a, -b, -s}, would be {0, a, b, v}, which is V. S
 and V would be inversions of each other, and the sets would not be
 GZ-related. Hence k is not of order 2.

 We show that 2k is not 2g. For if it were, then the 2g-
 inversion of set S would be {2g - 0, 2g - 2g, 2k - (k - g), 2k - k},
 which is {2g, 0, k + g, k}, which is V. But then S and V would be
 inversions, each of the other, so S and V would not be GZ-related.

 Hence 2k is not 2g.
 So Case 1 of Possibility 3 entails the truth of theorem 4.3.
 Case 2: s = v - b. We shall show this cannot happen.

 Since Possibility 3 supposes that v = s - a, Case 2 implies that v - b
 = s = v + a, and b = -a, while v = s - a. We may then write S = {0,
 a, -a, s}, V = {0, a, -a, s - a}.

 Suppose that S and V have the same interval-assortment.
 Then the intervals of S which involve s must MEM the intervals of

 V which involve s - a. So the roster [s, - s, s - a, a - s, s + a, - a - s]

 MEM the roster [s - a, a - s, s - 2a, 2a - s, s, -s]. Pruning the
 rosters, we see that [s + a, -a - s] matches, en masse, [s - 2a, 2a - s].
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 Thus either s + a = s - 2a (Subcase 1), or else s + a = 2a - s (Subcase
 2).

 In Subcase 1, where s + a = s - 2a, it follows that 3a = 0,
 and a is of order 3. Thus S = {0, a, 2a, s} while V = {0, a, 2a, s - a}
 = {0, a, 2a, s + 2a}. The 2a- transpose of set S is thus {2a + 0, 2a + a,
 2a + 2a, 2a + s}, which is {2a, 0, a, s + 2a}, which is V. But then V,

 a transposition of S, cannot be GZ-related to S. So Subcase 1
 cannot happen.

 In Subcase 2, where s + a = 2a - s, it follows that s - a = - s.

 Then, while S = {0, a, -a, s}, V = {0, a, -a, s - a} = {0, a, -a, -s}.
 Hence V is the 0-inversion of S; the sets S and V are not GZ-

 related. So Subcase 2 cannot happen.
 Then Case 2 cannot happen.

 Theorem 4.2 is proved. We can sum up theorems 3.2 and
 4.2 in one package.

 4.3 Theorem: Conditions (A) and (B) below are logically
 equivalent, for 4-element sets S and Vin a commutative group:

 (A) S and V are GZ-related, and can be transposed or
 inverted so as to share a common 3-element subset.

 (B) There exist elements g and k of the group, and
 transposition-or-inversion operations OP and OP', such that

 (i) g is of order 4.
 (ii) k is not a multiple ofg, nor is k of order 2, nor does

 2k = 2g.
 (Hi) S = OP({0, 2g, k-g, k}), while V= OP'({0, 2g, k,

 k +gf).

 4.4 Corollary: Let G be a finite group in which 4-element sets
 S and V exist that are GZ-related and have T-or-I-related 3-

 element subsets. Then the cardinality of G must be divisible by 4.

 PROOF: The "g" of (4.3) must be of order 4, and in any
 finite group (commutative or not), the order of any element will
 divide the cardinality of the group (this is a well-known result of
 group theory).
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 4.4.1 In addition to the finite groups of 4.4 above, there are also
 infinite groups that possess GZ-related 4-element sets of the type
 under discussion. The group of all non-zero complex numbers
 under multiplication is one such: the complex number i (the
 square root of-1) is of multiplicative order 4 in that group. The
 infinite group of complex numbers with absolute value 1, under
 multiplication, also contains i. So either of those infinite groups
 contains (infinitely many) 4-element GZ-related sets with T-or-I-
 related 3-element subsets.8

 4.4.2 Even for the finite groups of 4.4 above, there will be many
 which are not cyclic (that is, are not of the form "integers modulo
 4N" for some N). One that seems applicable to musical matters is
 the group G formed as the direct sum of groups Gl and G2, the
 latter groups each being a copy of integers-mod-4. G can be
 expressed mathematically as all ordered pairs <x,y>, x and y each
 being some integer mod 4. The group sum of <x,y> and <z,w> in
 G is the pair <x + z, y + w>.

 In this group, the element g = <1,1> is of order 4, its
 multiples being <0,0>, <1,1>, <2,2>, and <3,3>. The element k =
 <1,2> is not a multiple of g, and 2k = <2,0> is not 0, nor is it 2g.
 So the sets S = {0, 2g, k - g, k} and V = {0, 2g, k, k + g} will be Z-
 related. These are the sets S = {<0,0>, <2,2>, <0,l>, <1,2>} and V
 = {<0,0>, <2,2>, <1,2>, <2,3>}. Numerous other such GZ-related
 4-element sets may be formed, using other choices for g and k.

 We observe that the group element k = <1,2>, in this
 example, is of order 4. It is of course not of order 2, nor is it a
 multiple <n,n> of g = <1,1>, nor is 2k = 2g (the former is <2,0>;
 the latter is <2,2>).

 The group G of the present example may be applied
 musically to octatonic theory. The pairs of G can be used to label
 dyads of an octatonic scale for which one note belongs to one of the

 A typical GZ-related pair of such sets will have the form S = {x, -x, -ixk, xk} or S
 = {x, -x, ix/k, x/k}, V = {y, -y, yk, iyk} or V = {y, -y, y/k, -iy/k}, where k is some

 non-zero complex number (resp. of absolute value 1) other than 1, i, -1, or -i, and

 x and y are non-zero complex numbers (resp. of absolute value 1). Such sets are
 GZ-related in the pertinent multiplicative groups; that is, their assortments of

 quotients will MEM.
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 constituent diminished-seventh subsets, and the other note belongs
 to the other constituent diminished-seventh set. Thus in the

 octatonic set {C,Ctt,B,E,FK,G,A,BI?}, we may label the dyad {C,Ct}
 as <0,0>, the dyad {B,Ctt} as <l,0>, the dyad {FJ,Clt} as <2,0>, ...,
 the dyad {C,E} as <0,l>, the dyad {C,G} as <0,2>, ..., the dyad
 {B,E} as <1,1>, the dyad {B,G} as <1,2>, ..., the dyad {Fl,»l as
 <2,3>, ..., and so forth.

 In this representation, the elements of G can be used to
 label intervals between such note-pairs, subtracting the
 corresponding G-labels of the note-pairs. For instance, the interval
 from dyad {EI?,Ctt} to dyad {Ff,Bt} is the interval from dyad <l,0> to

 dyad <2,3>, which is the difference (<2,3> - <l,0>) in group G,
 which is the element <1,3> of G.

 The GZ-related numerical sets S and V above, S = {<0,0>,
 <2,2>, <0,l>, <1,2>} and V = {<0,0>, <2,2>, <1,2>, <2,3>}, label
 the octatonic dyad-sets S = {<C,Ctt>, <F#,G>, <C,E>, <EI?,G>} and
 V = {<C,a>, <Ff,G>, <B,G>, <F«,Bb}.

 4.5 Definition: GZ-related 4-element sets in some

 commutative group that have the form of (4.3) above will be called
 "of form (4.3)."

 5. GZ-related 4-element sets that are not of form (4.3).

 5.1 Certain commutative groups may have GZ-related 4-
 element subsets that are not of the form described in (4.3) above.

 5.1.1 For example, the 16-element group of (4.4.2) above
 possesses the 4-element sets S = {<0,0>, <l,0>, <0,l>, <3,3>} and V
 = {<0,0>, <l,0>, <0,3>, <3,1>}. We shall show that the sets are
 GZ-related, and that they are not of form (4.3) .9

 The (non-zero) interval-roster of S is [<l,0>, <3,0>, <0,l>,
 <0,3>, <3,1>, <1,3>, <3,3>, <1,1>, <2,3>, <2,1>, <3,2>, <1,2>].

 Representing the group G as in (4.4.2), we can consider the sets S = {<0,0>,
 <l,0>, <0,l>, <3,3>} and V = {<0,0>, <l,0>, <0,3>, <3,1>} to be numerical labels
 for four-element sets of certain octatonic dyads. Under that identification, S =
 {<C,Cf>, <B,Cf>, <C,E>, <A,Bt»} and V = {<C,O>, <B,C§>, <C,BI», <A,Ct>}.
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 The (non-zero) interval-roster of V is [<l,0>, <3,0>, <0,3>, <0,l>,
 <3,3>, <1,1>, <3,1>, <1,3>, <2,1>, <2,3>, <3,2>, <1,2>]. The sets
 S and V have the same interval-assortment.

 V is not a transposition of S: a generic transposition of S,
 by the interval <m,n>, is S' = {<m,n>, <m + 1, n>, <m, n + 1>,
 <m + 3, n + 3>}. Suppose S' were the same set as V. Then one of
 the members of S' would have to be <0,0>, a member of V. It is

 not possible for <m,n> to be that member of S', since S is not the
 same set as V. It is not possible for <m + 1, n> to be the zero
 member of S', since in that case <m,n> = <3,0>, which is a member

 of S' but not of V. It is not possible for <m, n + 1> to be the zero
 member of S', since in that case <m,n> = <0,3>, so that <m + 1, n>

 = <1,3>, being a member of S', would have to be a member of V.
 But it is not. It is not possible for <m - 1, n - 1> to be the zero
 member of S', since in that case <m,n> = <1,1> and <m,n>, while a
 member of S', is not a member of V.

 We inspect the generic <m,n>-inversion of S in the same
 manner. S' = {<m,n>, <m - 1, n>, <m, n - 1>, <m + 1, n + 1>},
 and we conclude that V is not any inverted form of S. So S and V
 above are not related by transposition or inversion. Having the
 same interval-assortment, they are then GZ-related.

 But S and V here are not of form (4.3). A quick way to see

 this is to observe, by inspecting the interval-roster of S, that S spans

 no interval of order 2. But any GZ-related set of form (4.3) must
 span the interval "2g" of (4.3), an interval of order 2.

 5.1.1.1 It is in fact a salient aspect of affairs here that S
 spans no interval of order 2. (Nor, of course, does V.) This feature
 will turn out to be typical of GZ-related tetrads that are not of
 form (4.3).

 5.1.1.2 Even further: S does not span any non-zero
 interval in more than one way, as one may verify by inspecting its

 interval-roster. Again, this feature will turn out to be typical of
 GZ-related tetrads that are not of form (4.3).

 5.1.1.3 Another salient aspect of affairs: there exist
 intervals a and b in the group G such that S can be expressed as the
 union of an a-dyad with a b-dyad, and V can also be expressed as
 the union of an a-dyad with a b-dyad. Here we take a = <l,0> and
 b = <3,2>. S is then the union of {<0,0>, <l,0>}, an a-dyad, with
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 {<0,l>, <3,3>}, a b-dyad, while V is the union of {<0,0>, <l,0>}, an
 a-dyad, with {<0,3>, <3,1>}, a b-dyad.

 This feature is, however, not typical of (all) GZ-related
 tetrads that are not of form (4.3). The next example will illustrate
 the point.

 5.1.2 Here is an example of GZ-related tetrads, not of form
 (4.3), that cannot be broken up into a-dyads and b-dyads in the
 manner of (5.1.1.3). In the additive group mod 13, the 4-element
 sets S = {0, 1, 4, 6} and V = {0, 2, 3, 7} are GZ-related. Their
 respective interval-assortments are [1, 12, 4, 9, 3, 10, 6, 7, 5, 8, 2,
 11] and [2, 11, 3, 10, 1, 12, 7, 6, 5, 8, 4, 9]; these rosters each list

 every non-zero interval once, and so the rosters match, en masse.
 Additionally, the sets S and V above are not related by any T-or-I
 operation: S can be spanned within 6 consecutive numbers mod
 13, while V, no matter how transposed or inverted, cannot be.

 But S and V are not of form (4.3). To show this, we may
 invoke the group-theoretic theorem adduced in the proof of 4.4
 above, to observe that the additive group mod 13 does not contain
 any element of order 4. Since the S and V mentioned just above
 are not of the form described in (4.3), they cannot have T-or-I-
 related 3-element subsets.

 One verifies by inspection that S and V cannot both be
 expressed as an a-dyad and a b-dyad. For instance, S can be
 expressed as the 1-dyad {0,1}, union the 2-dyad {4,6}. But if we
 remove the 1-dyad of V, which is {2,3}, we are left not with a 2-
 dyad, but with the 6-dyad {0,7}. And so forth.

 5.1.3 So there do exist GZ-related 4-element subsets of

 commutative groups, that do not have T-or-I-related 3-element
 subsets. What, in general, can we conclude about such pairs of 4-
 element sets? We begin such a study here. The first big push will
 take us eventually to Theorem 5.4.

 5.2 Theorem: Let S and V be GZ-related 4-element subsets of a
 commutative group that do not have T-or-I-related 3-element subsets

 [i.e., that are not of form (4.3)]. Then S cannot span any interval of
 order 2.
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 PROOF: Suppose S did span an interval of order 2;
 suppose that interval is a. By assumption, the GZ-related V will
 also span interval a somehow. S and V may then be transposed
 into the forms S = {0, a, r, s}, V = {0, a, u, v}. After pruning the
 rosters slightly, we see that [r, -r, s, -s, r - a, a - r, s - a, a - s, s - r,
 r - s] must match, en masse, [u, -u, v, -v, u - a, a - u, v - a, a - v,
 v-u, u-v].

 u cannot match r or s, since S and V are assumed to have
 no common 3-element subset.

 u cannot match -r, since in that case the 0-inversion of S

 would be {-0, -a, -r, -s} = {0, a, u, -s} (-a being equal to a), and
 the 0-inversion of S would have 3 common elements with V, which

 is assumed by (5.2) not to be so. Symmetrically, u cannot match - s.

 So, pruning the S-roster even more, we see that u must
 match something on the roster [r - a, a - r, s - a, a - s, s - r, r - s] .

 u cannot match a - r, since if it did, the a-inversion of S
 would be {a - 0, a - a, a - r, a - s} = {a, 0, u, a - s}, and that
 inversion of S would share 3 common elements with V, contrary to

 the assumption of (5.2). Symmetrically, u cannot match a - s.

 So, pruning the S-roster even more, we see that u must
 match something on the roster [r - a, s - a, s - r, r - s].

 u cannot match r - a, since if it did the a-transposition of S
 would be {a + 0, a + a, a + r, a + s}, which (since a = -a) is {a, 0,
 r - a, a + s}, which would be {0, a, u, a + s}, so that the a-
 transposition of S would have 3 common elements with V,
 contrary to supposition. Symmetrically, u cannot match s - a.

 So, pruning the S-roster even more, we see that u must
 match something on the roster [s - r, r - s]. By the symmetry of
 the situation:

 (i) We can suppose that u = s - r.

 Going through the same procedure as above, trying to match v
 with something on the S-roster, we see that v must match
 something on the roster [s - r, r - s]; then, since u and v are
 distinct,

 (ii) v must equal r - s, which is - u.

 Going through the same procedure as above, trying to match r and
 s with some things on the V-roster, we see that r and s must match
 distinct things on the pruned roster [v - u, u - v]. We distinguish
 two cases. Case 1: r = v - u, s = -r; Case 2: r = u - v, s = -r. We
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 shall show that neither of these two cases can occur, and that will

 prove Theorem 5.2.1.
 Case 1: r = v - u. Via (i) and (ii) above, r = (r - s) - (s - r),

 which equals 2r - 2s. But if r = 2r - 2s, then r = 2s (via algebra).
 Since v = r - s ((ii) above), we would then have v = r-s = 2s-s = s.
 Since v = s, S and V would have 3 common elements, contrary to
 assumption. So Case 1 cannot happen.

 Case 2: r = u - v. Invoking (i) and (ii) above, we can write
 r = u - v = (s - r) - (r - s) = 2(s - r) = 2u. Then u = s - r (via (i)

 above) = s - 2u, and 3u = s. Now r and s are negatives, each of the
 other (via (ii) applied to r and s), and we have just seen that r = 2u,
 while s = 3u. Hence

 (iii) u is of order 5, and v (which is -u via (ii)) is therefore
 4u.

 Substituting 2u for r, 3u for s, and 4u for v, we can then write
 (iv) S = {0, a, 2u, 3u}, V = {0, a, u, 4u}; u is of order 5.

 The S-roster is then [a, a, 2u, -2u, 2u - a, a - 2u, 3u, -3u, 3u - a,

 a - 3u, u, -u]. (a is of order 2, hence equals -a.) And the V-roster
 is [a, a, u, -u, u - a, a - u, 4u, -4u, 4u - a, a - 4u, 3u, -3u]. Now
 since u is of order 5, 4u = -u and -4u = u. Accordingly, we may
 rewrite the V-roster above as [a, a, u, -u, u - a, a - u, -u, u, -u - a,

 a + u, 3u, -3u]. Pruning 2 a's, one u, and one -u off each roster,
 we see that the pruned S-roster [2u, -2u, 2u - a, a - 2u, 3u, -3u,
 3u - a, a - 3u] must MEM the pruned V-roster [u - a, a - u, -u, u,
 -u-a, a + u, 3u, -3u].

 Now the latest-pruned V-roster still lists one u, so u must
 match some member of the latest-pruned S-roster [2u, -2u, 2u - a,
 a - 2u, 3u, -3u, 3u - a, a - 3u].

 Since u is of order 5, u cannot match 2u, nor -2u (which

 is 3u), nor 3u, nor -3u (which is 2u). So u must match something
 on the further-pruned roster [2u - a, a - 2u, 3u - a, a - 3u].

 In any of those four events, we can show that a must equal
 some non-zero multiple of u. But a is of order 2, and every non-
 zero multiple of u is of order 5. So Case 2 cannot happen.

 This proves Theorem 5.2.

 5.3 Lemma: In a commutative group, let S be a 4-element set
 spanning no interval of order 2. Suppose S spans some interval a in at
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 least 2 different ways. Then S may be transposed or inverted so as to
 assume either Form (i) or Form (ii) below.

 Form (i): S = fO, a, 2a, x}, for some element x.

 Form (ii): S = fO, a, y, y + a}, for some element y.

 PROOF: Given the interval a as in the statement of the

 theorem, we can transpose S into the form {0, a, r, s}, for some r
 and s in the group. The interval-assortment of S is then [a, -a, r,
 - r, s, - s, r - a, a - r, s - a, a - s, s - r, r - s]. By supposition, a
 appears at least twice on this roster, and a does not appear as -a
 (since S spans no interval of order 2). Since S has 4 distinct
 elements, a does not appear on the roster as r, nor does it appear as

 s. a can not appear as a - r, since r is distinct from 0. Likewise, a
 cannot appear as a - s. So a matches something on the pruned
 roster [-r, -s, r - a, s - a, s - r, r - s]. We show that, no matter
 which of the four roster entries a matches, S is either already in one

 of the desired Forms of the Lemma, or can be transposed into one
 of those Forms.

 If a = -r, then the a-transpose of S is {a + 0, a + a, a + r,
 a + s} = {a, 2a, 0, a + s}, and this transposed form of S is in Form (i)
 of the Lemma. Symmetrically, if a = - s, then the a-transpose of S is
 in Form (i) of the Lemma.

 If a = r - a, then r = 2a and S = {0, a, r, s} = {0, a, 2a, s} is

 already in Form (i) of the Lemma. Symmetrically, if a = s - a, then
 S is already in Form (i) of the Lemma.

 If a = s - r, then s = r + a and S = {0, a, r, s} = {0, a, r, r + a}

 is already in Form (ii) of the Lemma. Symmetrically, if a = r - s,
 then S is already in Form (ii) of the Lemma.

 The Lemma is proved. We are ready now to prove a very
 general theorem.

 5.4 Theorem: In a commutative group, let S and V be GZ-
 related 4-element sets that have no T-or-I-r elated 3-element subsets

 [i.e., that are not of form (4.3)]. Then no non-zero interval appears
 more than once in the interval-assortment ofS and V.

 PROOF: We know from (5.2) that no interval of order 2

 appears among those of the interval-assortment.
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 Suppose now that some other interval a appears more than
 once in the interval-assortment. From (5.3), then, we infer that S

 (suitably transposed or inverted) must be of Form (i) or Form (ii)
 described therein, and V (suitably transposed or inverted) must also
 be of Form (i) or Form (ii).

 It cannot be the case that both S and V (suitably transposed or

 inverted) are of Form (i). For if S = {0, a, 2a, x} and V = {0, a, 2a,
 y}, then S and V share a common 3-element subset, contrary to
 assumption. So either S or V must be of Form (ii). We shall
 suppose that V (at least) is of Form (ii), supposing that V = {0, a u,
 u + a}. We distinguish two cases. Case 1: S is of Form (i); Case 2:
 S is of Form (ii). We show that neither of these Cases can happen,
 and hence that there can be no such interval a.

 Case 1: S (suitably transformed) is of Form (i). We have
 supposed that V = {0, a, u, u + a}; we shall suppose that S = {0, a,
 2a, s}. The interval-assortment of S is then [a, -a, 2a, -2a, a, -a, s,

 -s, s - a, a - s, s - 2a, 2a - s]. And the matching-en-masse interval-
 assortment of V is [a, -a, u, -u, u - a, a - u, u + a, -a - u, u, -u, a,

 -a]. Pruning two a's and two -a's off each list, we see that [2a, -2a,
 s, -s, s - a, a - s, s - 2a, 2a - s] MEM [2a, -2a, u, -u, u - a, a - u,

 u + a, -a - u, u, -u]. So u must match something on the list [2a,
 -2a, s, -s, s - a, a - s, s - 2a, 2a - s]. We shall show this cannot be,

 so that Case 1 cannot happen.
 u cannot match 2a, since S and V would then have in

 common the 3-element subset {0, a, 2a}.

 u cannot match -2a, for then the a-transposition of V
 would be {a + 0, a + a, a + u, a + (u + a)} = {a, 2a, -a, 0}, and that
 would have 3 common elements with S (which is {0, a, 2a, s}).

 u cannot match s, for then S = {0, a, 2a, s} and V = {0, a, u,
 u + a} = {0, a, s, s + a} would have 3 common elements.

 We leave for a while the possibility that u might equal -s,
 and continue along [2a, -2a, s, -s, s - a, a - s, s - 2a, 2a - s], from
 s - a on.

 u cannot match s - a, for then the a-transposition of V
 would be {a + 0, a + a, a + u, 2a + u} = {a, 2a, s, s + a}, and that
 would have 3 common elements with S (which is {0, a, 2a, s}).

 u cannot match a - s, for then the a-inversion of S would

 be {a - 0, a - a, a - 2a, a - s}, which is {a, 0, -a, u}, a set having 3
 common elements with V (which is {0, a, u, u + a}).
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 We leave for the time being the possibility that u might
 equal s - 2a, and continue along [2a, -2a, s, - s, s - a, a - s, s - 2a,
 2a - s] , from 2a - s on.

 u cannot match 2a - s, for then the 2a-inversion of S
 would be {2a - 0, 2a - a, 2a - 2a, 2a - s} = {2a, a, 0, u}, which has
 3 common elements with V = {0, a, u, u + a}.

 Summing up, we see that there are only two entries on the
 roster [2a, -2a, s, - s, s - a, a - s, s - 2a, 2a - s] which u could
 possibly match, namely u = - s and u = s - 2a. But that roster must
 not only list one u somewhere, it must in fact list u twice, since it
 must match, en masse, the roster [2a, -2a, u, -u, u - a, a - u, u + a,

 -a - u, u, -u], as described in the first paragraph of this discussion
 of Case 1.

 Since the roster [2a, -2a, s, -s, s - a, a - s, s - 2a, 2a - s]
 must list u twice, and u cannot match anything on the roster except

 for (possibly) -s or s - 2a, we infer that u does equal -s, and also
 that u = s - 2a. But then -s = s - 2a, and 2(s - a) = 0. So s - a is of

 order 2. But s - a is an interval spanned by S, and (5.2) tells us
 that S can span no interval of order 2. Case 1 cannot happen.

 Case 2: S (suitably transformed) is of Form (ii). We have
 supposed that V = {0, a, u, u + a}; we shall suppose that S = {0, a, r,
 r + a}. The interval-assortment of S is then [a, -a, r, -r, r - a, a - r,

 r + a, - a - r, r, - r, a, -a] . And the matching~en-masse interval-
 assortment of V is [a, -a, u, -u, u - a, a - u, u + a, -a - u, u, -u, a,
 -a].

 Pruning the rosters, we see that [r, -r, r - a, a - r, r + a,
 -a - r, r, -r] must therefore match, en masse, [u, -u, u - a, a - u,

 u + a, -a - u, u, -u]. In particular, u must match something on the
 roster [r, -r, r - a, a - r, r + a, -a - r, r, -r].

 u cannot equal r, for S and V have no common 3-element
 subset.

 u cannot equal -r, for in that event we would have V = {0,
 a, u, u + a} = {0, a, -r, -r + a}, and the r-transpose of V would then
 be {r, r + a, 0, a}, which is S itself.

 u cannot equal r - a, for in that event r = u + a, and the
 sets S and V would share the 3 elements 0, a, and r = u + a in
 common.

This content downloaded from 128.151.124.135 on Fri, 15 Mar 2019 14:53:31 UTC
All use subject to https://about.jstor.org/terms



 102 Integral

 u cannot equal a - r, for in that event the a-inversion of S,
 which is {a - 0, a - a, a - r, a - (r + a)}, would be {a, 0, u, u + a},
 which is V itself.

 u cannot equal r + a, for in that event S and V would share
 the common 3-element subset {0, a, r + a} = {0, a, u}.

 u cannot equal -a - r, for in that event the r- transpose of V
 would be {r + 0, r + a, r + u, r + u + a} = {r, r + a, r + u, 0}, which
 has 3 common elements with S = {0, a, r, r + a}.

 But then, contrary to supposition, u does not match
 anything on the roster [r, -r, r - a, a - r, r + a, -a - r, r, -r]. So
 Case 2 cannot happen.

 This establishes theorem (5.4).

 5.4.1 Corollary: In a commutative group, let S and V be GZ-
 related 4-element sets that have no T-or-I-related 3-element subsets

 [i.e., that are not of form (4.3)]. Then the group must be of
 cardinality 13 or greater (possibly infinite).

 PROOF: Via (5.4), the group must admit at least 12
 distinct non-zero intervals, for 12 such will appear on the interval-
 assortment of S.

 6. GZ-related tetrads, not of form (4.3), that can both be
 expressed as the union of an a-dyad and a b-dyad.

 6.1 (5.1.1) above gave an example of a group G that contained
 4-element GZ-related sets S and V, not of form (4.3), where it was
 the case that for suitable intervals a and b, both S and V could be

 expressed as the disjoint union of an a-dyad and a b-dyad. This
 was noted in 5.1.1.3.

 (5.1.2) above gave an example of a group G that contained
 4-element GZ-related sets S and V, not of form (4.3), where it was
 not the case that for suitable intervals a and b, both S and V could

 be expressed as the disjoint union of an a-dyad and a b-dyad. This
 was noted at the end of the section discussing that example.

 In sum, of the GZ-tetrads-in-commutative-groups that are
 not of form (4.3), some have the property that, for suitable
 intervals a and b, both S and V can be expressed as the disjoint
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 union of an a-dyad and a b-dyad. And some do not have that
 property. In this section we shall explore those that do have the
 indicated property.

 We shall see that these tetrads all have the following
 structure:

 (i) The group includes (an isomorphic copy of) the 16-
 element group of example (5.1.1) as a subgroup.

 (ii) The GZ-tetrads S and V of the big group are
 transpositions-or-inversions (within the big group) of the GZ-
 tetrads S and V of (5.1.1), as those are expressed within the 16-
 element subgroup described in (i) above.

 These informal observations are expressed more precisely
 in the theorem that follows here.

 6.2 Theorem: Let G be a commutative group; let S and V be
 GZ-related 4-element sets in G that do not include T-or-I related 3-

 element subsets [i.e., that are not of form (4.3)].

 Suppose that there are elements a and b in G such that both S

 and V can be expressed as a pair of elements that differ by ±a, and a
 disjoint pair of elements that differ by ±b. Then:

 (A) a is of order 4, and

 (B) there exists another element r, of order 4y such that the

 only common multiple of a and r in G is the 0-element, and

 (C) there exist T-or-I operations OP and OP' in G such that
 S = OP({0, a, r, -r-a}), while V= OP'({0> a, -r, r-aj).

 PROOF: By the assumptions of the theorem, we may
 transpose or invert S and V so that, for some r and some u, S
 assumes the form {0, a, r, r + b}, while V assumes the form {0, a, u,

 u + b}. We shall suppose that S and V are already in those forms.
 By the assumptions of the theorem, the interval-assortment

 of S matches, en masse, the interval-assortment of V. We can prune

 entries a, -a, b, and -b off both rosters; having done so, we
 conclude that

 (i) [r, -r, r - a, a - r, r + b, -r - b, r + b - a, a - (r + b)]
 MEM [u, -u, u - a, a - u, u + b, -u - b, u + b - a, a - (u + b)].

 Consequently, the element u, which appears on the pruned

 V-roster (right-side roster) of (i), must match (equal) something on
 the pruned S-roster (left-side roster) of (i).
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 6.2. 1 We show that u must equal -r.
 u cannot match r, because the sets S and V are assumed to

 have no common 3-element subset. For the same reason, u cannot
 match r + b. u cannot match a - r, for if it did, the a-inversion of
 S, {a, 0, a - r, a - (r + b)}, would be {a, 0, u, u - b}, which would
 have 3 common elements with V. For the same reason, u cannot
 match a - (r + b). It follows, from (i), that

 (ii) u must match something on the list [-r, r - a, -r - b,
 r + b - a] . Now

 (iii) u cannot match -r - b.

 For if it did, then u + b would equal -r, and the 0-inversion of set
 S, which is {-0, -a, -r, -(r + b)}, would be {0, -a, u + b, u}, so that
 the 0-inversion of S would have 3 common elements with V,

 contrary to supposition. Furthermore,
 (iv) u cannot match r - a.

 For if it did, then u + b would equal r + b - a, and the rosters of (i)
 above could be pruned as in (v) below:

 (v) [r, -r, r + b, -r - b] matches, en masse, [u - a, a - u,
 u + b-a, a-(u + b)].
 Substituting u = r - a (the assumption of (iv)) throughout the u-
 roster of (v), we would have

 (vi) [r, -r, r + b, -r - b] MEM [r - 2a, 2a - r, r - 2a + b,
 2a-r-b].
 Now r, on the left of (vi), cannot match (equal) r - 2a, on the right.
 (That would entail 2a = 0, but by (5.2), S cannot span any interval
 of order 2.) Nor can r, on the left of (vi), match 2a - r on the
 right. (That would entail 2(a - r) = 0; S would then span the
 interval a - r of order 2.) r, on the left of (vi), in no way can match

 r - 2a + b on the right. For if it did, then we would have b = 2a.
 Furthermore, we could prune (vi) so that [r + b, -r - b] would
 match, en masse, [r - 2a, 2a - r]. Substituting b = 2a, we could
 infer that

 (vii) [r + 2a, -r - 2a] MEM [r - 2a, 2a - r].
 Thus either r + 2a = r - 2a, or r + 2a = 2a - r. If r + 2a = r - 2a,

 then a would be of order 4. But then b, which equals 2a, would be
 of order 2, and S would span an interval of order 2. That cannot
 happen. If on the other hand r + 2a = 2a - r, then r = -r and S
 would span the interval r of order 2. That cannot happen. So we
 have established (iv) above.
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 In light of (ii), (iii), and (iv) above, we infer
 (ix) either u = -r, or u = r + b - a.

 Exchanging the roles of S and V in the immediately preceding
 work, so that we exchange the roles of u and r symmetrically, we
 infer the symmetrically-related conclusion:

 (x) either r = -u, or r = u + b - a.
 It cannot be that both u = r + b-a(asin (ix)) and r = u + b-a(as
 in (x)), for in that case we would have b - a = 0, and b = a. (S does

 not span any interval in two different ways, via (5.4).) It follows
 that either u = -r (as in (ix)), or r = -u (as in (x)). And that is
 simply to say that

 (xi) u = -r. (6.2.1) is thus accomplished.
 Since u = - r, and - u = r, we can prune the rosters of (i) above,
 obtaining

 (xii) [r - a, a - r, r + b, -r - b, r + b - a, a - (r + b)] MEM
 [u - a, a - u, u + b, - u - b, u + b - a, a - (u + b)] .

 Substituting u = - r, we get
 (xiii) [r - a, a - r, r + b, -r - b, r + b-a, a - (r + b)] MEM

 [-r - a, a + r, b - r, r - b, -r + b - a, r + a - b].
 Now r - a, on the left side of (xiii), does not match -r - a on the

 right, (r ^ -r, since S contains no interval of order 2.) And r - a,
 on the left side of (xiii), does not match a + r on the right, (-a does

 not equal a.) Neither does r - a, on the left of (xiii), match r - b on

 the right, (-a ^ - b, since S spans no interval in two different ways.)
 So

 (xiv) r - a, on the left side of (xiii), matches something on
 the roster [b - r, -r + b - a, r + a - b].

 6.2.2 We show that r - a must equal b - r.
 The demonstration will take place via topics (xv)-(xvii),

 following.
 (xv) r - a, in (xiv), cannot match - r + b - a.

 For suppose it did. We could prune (xiii) to get
 (xvi) [r + b, -r - b, r + b - a, a - (r + b)] matches, en masse,

 [- r - a, a + r, b - r, r - b].

 Now, since r - a = -r + b - a, we infer that b = 2r. Substituting 2r
 for b in (xvi), we infer that

 (xvii) [3r, -3r, 3r - a, a - 3r] MEM [-r - a, a + r, r, -r].
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 Then r, on the right-hand roster of (xvii), must match something
 on the left-hand roster there.

 r cannot match 3r, since that would entail 2r = 0, and we

 know that S spans no interval of order 2.
 If r matched -3r in (xvii), 3r would be -r, and r + b = 3r =

 -r = u. But then S would include the 3-element set {0, a, r + b} =
 {0, a, u}, and V would also include the same 3-element set. But we
 assumed that S and V had no common 3-element subset. So r, on

 the right side of (xvii), cannot match -3r on the left.
 If r matched 3r - a in (xvii), then we would have a = 2r.

 But via (xv) - still in effect here - we have b = 2r. Thus a = b,
 which cannot happen. (S does not span any non-zero interval in
 two different ways.) So r does not match 3r - a in (xvii).

 And r cannot match a - 3r in (xvii). For if it did, we
 would have a = 4r. Now (xvii) says that [3r, - 3r, 3r - a, a - 3r]
 MEM [-r - a, a + r, r, -r]. Substituting 4r for a, we would obtain
 [3r, -3r, -r, r] MEM [-5r, 5r, r, -r]. Pruning, we would obtain
 [3r, -3r] MEM [-5r, 5r]. Thus 3r = 5r, or 3r = -5r. But if 3r = 5r,

 then 2r = 0 and S would span a non-zero interval of order 2. And
 if 3r = -5r, then 8r would equal 0; since a = 4r, we would have 2a =
 0, and thus S would span a non-zero interval of order 2. None of
 this can happen. So r does not match a - 3r in (xvii).

 The four preceding paragraphs have shown that r, on the
 right-hand roster of (xvii), cannot match anything on the left-hand
 roster of (xvii). Consequently (xvii) cannot happen. But (xvii)
 followed from (xv). So (xv) cannot happen.

 We return then to (xiv), knowing that (xv) cannot be the
 case. Here is (xiv) again, for review:

 (xiv) r - a, on the left side of (xiii), matches something on
 the roster [b - r, - r + b - a, r + a - b].

 We must show that r - a = b - r, and we have just shown (in (xv)-
 (xvii)) that r - a cannot equal - r + b - a. Now we have to show
 that r - a cannot equal r + a - b, in the context of everything so far

 up through (xiii). We give (xiii) again, for convenient reference:
 (xiii) [r - a, a - r, r + b, -r - b, r + b - a, a - (r + b)] MEM

 [-r - a, a + r, b - r, r - b, -r + b - a, r + a - b].
 If r - a did match r + a - b, then we would have -a = a - b, and b =

 2a. Pruning ±(r - a) off the left side of (xiii), and ±(r + a - b) off
 the right side, we would have
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 (xviii) [r + b, -r - b, r + b - a, a - (r +b)] matches, en
 masse, [-r - a, a + r, b - r, r - b].

 Substituting b = 2a throughout (xviii), we would have
 (xix) [r + 2a, - r - 2a, r + a, - r - a)] MEM [- r - a, a + r,

 2a -r, r-2a].

 Pruning (xix), we would have
 (xx) [r + 2a, -r - 2a] MEM [2a - r, r - 2a].

 Consequently, r + 2a would have to equal either 2a - r or r - 2a.
 But neither of those things can happen, r + 2a cannot equal 2a - r,
 for if it did then r would equal -r, and S would span the interval r
 of order 2. And r + 2a cannot equal r - 2a, for if it did then 2a
 would be of order 2, so b = 2a would be of order 2; S would then

 span the interval b of order 2.

 Since (xx) cannot happen, r - a, in (xiv), can thus match
 only b - r in (xiv). (6.2.2) is accomplished.

 We give (xiii) again for convenient reference.
 (xiii) [r - a, a - r, r + b, -r - b, r + b - a, a - (r + b)] MEM

 [-r - a, a + r, b - r, r - b, -r + b - a, r + a - b].

 We know now that r - a = b - r, so we prune ±(r - a) off
 the left side of (xiii), and ±(b - r) off the right side, obtaining

 (xxi) [r + b, -r - b, r + b - a, a - (r + b)] matches, en masse,

 [-r - a, a + r, -r + b - a, r + a - b]. ,

 Since r - a = b - r, we know that b = 2r - a. Substituting 2r - a for

 b throughout (xxi) above, we obtain
 (xxii) [3r - a, a - 3r, 3r - 2a, 2a - 3r] MEM [-r - a, a + r,

 r-2a, 2a- r].
 Since a + r appears on the right side of (xxii), it must match
 something on the left side:

 (xxiii) a + r matches something on the roster [3r - a, a - 3r,
 3r-2a,2a-3r].

 6.2.3 We show that a + r, in (xxiii), must in fact equal a - 3r.
 We proceed by eliminating the other three possibilities in

 (xxiii).

 a + r cannot equal 3r - a, for if it did, then 2a would equal
 2r, and a - r, an interval of S, would be of order 2.

 a + r cannot equal 3r - 2a. For if it did, then 2r would
 equal 3a. Then b, which is 2r - a (from 6.2.2), would equal 3a - a.
 That is, we would have
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 (xxiv) b = 2a.

 Pruning (xxii) above under the supposition of the present
 paragraph, we could remove ±(a + r) from the right side, and also
 ±(3r - 2a) from the left side. From this we would then infer that
 [3r - a, a - 3r] would have to match, en masse, [r - 2a, 2a - r].
 But that cannot happen. For if 3r - a = r - 2a, then 2r would equal
 -a; whence (by the assumption of the present paragraph) 3a would
 equal -a; whence 4a = 0; whence 2b would equal 0 (xxiv), and S
 would span the interval b of order 2. Since [3r - a, a - 3r] has to
 match, en masse, [r - 2a, 2a - r], and since 3r - a (as just shown)
 cannot equal r - 2a, we would infer that 3r - a must equal 2a - r.
 But then 4r would equal 3a. However, the assumption of the
 present paragraph is that 2r = 3a. Thus 4r would equal 2r, and the
 interval r, spanned by S, would be of order 2.

 a + r cannot equal 2a - 3r. For if it did, then we would
 infer a = 4r. Pruning (xxii) under the assumption of the present
 paragraph, we could remove ±(a + r) from the right-hand roster,
 and ±(2a - 3r) from the left, giving [3r - a, a - 3r] MEM [r - 2a,
 2a - r]. But that cannot happen. For either Case 1 or Case 2
 following would have to obtain: Case 1: 3r - a = r - 2a; Case 2: 3r
 - a = 2a - r. We show that neither of the two Cases can happen.

 Case 1 : We would have 3r - a = r - 2a, so that 2r = -a.

 Then 4r would equal -2a. But 4r would also equal a (second
 sentence of the paragraph above). We could then infer that 3a = 0,
 whence 2a = -a. Substituting the latter relation into the equation
 for this case, we could infer 3r - a = r - 2a = r + a. But then 2r

 would equal -2a, and 2(r - a) would be zero. So S would span the
 interval r - a of order 2, which cannot be so. Thus Case 1 cannot

 happen.
 Case 2: From the equation 3r - a = 2a - r, we could infer

 4r = 3a. But also 4r = a (as similarly assumed for Case 1). So 3a
 would be equal to a; a would be of order 2, and S would span an
 interval of order 2. So Case 2 cannot happen.

 Since neither Case 1 nor Case 2 can happen, the
 supposition that [3r - a, a - 3r] MEM [r - 2a, 2a - r] cannot
 happen.

 The preceding paragraphs have removed every alternative
 to the conclusion of (6.2.3). So (6.2.3) is established: a + r must
 equal a-3r.
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 6.2.4 The rest of the way to Theorem 6.2.
 For convenient reference, we again give (xxii) above.
 (xxii) [3r - a, a - 3r, 3r - 2a, 2a - 3r] MEM [-r - a, a + r,

 r-2a, 2a -r].

 Knowing now (6.2.3) that a + r = a - 3r, we can prune ±(a + r)
 from the right of (xxii), and ±(a - 3r) from the left. We obtain

 (xxv) [3r - 2a, 2a - 3r] matches, en masse, [r - 2a, 2a - r].

 Now in (xv), 3r - 2a cannot match r - 2a, since 2r is not 0. (S does

 not span an interval of order 2.) Hence, in (xxv), 3r - 2a must
 match 2a - r. So 4r = 4a. But also, via (6.2.3), 4r = 0. Therefore

 (xxvi) Both a and r are of order 4.

 (xxvi) establishes (A) of Theorem 6.2. To establish (B) of the
 theorem (since r is of order 4), we need to show that no non-zero

 multiple of a is also a multiple of r. That is, for integers j and k
 between 1 and 3 inclusive, we must show that ja + kr is not 0. We
 proceed to that demonstration by cycling through values of j and k.

 a + r is not zero, since a and u = -r (by 6.2.1) are distinct
 members of V.

 a + 2r is not zero. For r is of order 4, so 2r is of order 2.
 And a, an interval of S, is not of order 2.

 a + 3r is not zero. For r is of order 4, so that 3r = -r. And

 a - r is not zero, (a and r are distinct members of S.)

 2a + r is not zero. For a is of order 4 (by (xxvi));
 consequently 2a is of order 2. And - r, an interval of S, is not of
 order 2.

 2a + 2r is not zero. For a + r = a - u (6.2.1), and a - u is
 an interval of V. But then that interval of V is not of order 2. So

 2 (a + r) is not zero.

 2a + 3r is not zero. For 3r is -r ((xxvi)), and we cannot
 have 2a - r = 0. We know this because r cannot be equal to 2a,
 because r is an interval of S, and 2a is of order 2 ((xxvi)).

 3a + kr is not zero, for k = 1,2, 3. For 3a + kr is the

 group-negative of a + (4 - k)r, and we have seen that a + (4 - k)r
 cannot be zero.

 Accordingly, (B) of Theorem 6.2 is established.
 Now at the beginning of our proof we transposed-or-

 inverted S and V to get them into the forms {0, a, r, r + b} and {0,
 a, u, u + b} respectively. Accordingly, (C) of Theorem 6.2 is
 established, and the entire Theorem is established. QE.D.
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 7. GZ-related tetrads, not of form (4.3), that cannot both be
 expressed as the union of an a-dyad and a b-dyad.

 7.1 (5.1.2) above gave an example of a group G that contained
 4-element GZ-related sets S and V, not of form (4.3), where it was
 not the case that for suitable intervals a and b, both S and V could

 be expressed as the disjoint union of an a-dyad and a b-dyad. This
 was noted at the end of the section discussing that example. The
 group in (5.1.2) was the additive group mod 13; the 4-element sets
 of the example, S = {0, 1,4, 6} and V = {0, 2, 3, 7}, are GZ-related.
 If we transpose that V by 4 mod 13, the resulting two tetrads will
 still be GZ-related; they will be S = {0, 1, 4, 6} and V = {4, 6, 7,
 11}.

 In the work of section 7 following, we shall prove that all
 remaining GZ-tetrads in commutative groups are essentially of just

 this sort. More specifically, we shall prove

 7.2 Theorem: Let G be a commutative group; let S and V be
 GZ-related 4-element sets in G that do not include T-or-I related 3~

 element subsets [i.e., that are not of form (4.3)].

 Suppose that there are not any elements a and b in G such
 that both S and V can be expressed as a pair of elements that differ by

 ±a, and a disjoint pair of elements that differ by ±b.

 Then there exists an element xofG which is of order 13, and
 there exist T-or-I operations OP and OP', such that

 either

 S = OP(fO, x, 4x, 6xj) and V= OP'({4x, 6x, 7x, llx}),
 or

 V= OP(fO, x, 4x, 6x}) andS = OP'({4x, 6x, 7x, llx}).

 PROOF: Transposing or inverting S and V as needed, we
 can suppose that S = {0, a, r, r + b}, while V = {r, r + b, u, u + c},
 where the six elements a, -a, b, -b, c, and -c are all distinct. (By
 the supposition of the theorem, if S is the union of an a-dyad and a

 b-dyad, then V is not the union of a b-dyad and an a-dyad. The
 twelve non-zero intervals of S are all distinct (by (5.4)), as are the
 twelve non-zero intervals of V.)

 Since c is an interval of V, it is an interval of the GZ-

 related S. Since c is distinct from ±a, and from ±b, spanning c
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 within S = {0, a, r, r + b} must involve either 0 or a, and either r or
 r + b.

 7.2.1 We may suppose that spanning c within S involves r, but
 not r + b.

 To see this, let us suppose that spanning c within S
 involves r + b. Set r' = r + b and b' = -b. Then we have S = {0, a,
 r', r' + b'}, while V = {r', r' + b', u, u + c}, and spanning c within S
 involves r'. So, by transforming the labels for elements of our GZ-

 related tetrads, we can make the supposition of (7.2.1).

 7.2.2 We may suppose that spanning c within S involves 0, not
 a.

 To see this, let us suppose that spanning c within S
 involves a. Then, via (7.2.1), either c = a - r, or c = r - a.

 Case 1: c = a - r. Now S = {0, a, r, r + b}, so the a-
 inversion of S, which we shall call S', is {a, 0, a - r, a - r - b} = {a,

 0, c, c - b} by the assumption of Case 1. Set b' = -b; then S' = {0,
 a, c, c + b'}.

 And V = {r, r + b, u, u + c} = {r, r - b', u, u + c}, so the
 b'-transposition of V, which we shall call V', then becomes {r + b',
 r, u + b', u + b' + c}. Set u = u + b'; and thus V = {r, r + b', u',
 u' + c}.

 Then the (c - r) -transposition of V', which we shall call
 V", is {c, c + b', c - r + u', c - r + u' + c}. Set u" = c - r + u'; then
 V" = {c,c + b',u",u" + c}

 In sum, transposing, inverting, and shuffling labels has
 allowed us to express our GZ-related tetrads as forms of S' = {0, a,
 c, c + b'} and V" = {c, c + b', u", u" + c}. Spanning c within S'
 involves 0, not a. So in Case 1 here, (7.2.2) is established.

 Case 2: c = r - a. Now S = {0, a, r, r + b}, and the ensuing
 (-a)-transposition of S, which we call S', is {-a, 0, r - a, r - a + b},
 which is {-a, 0, c, c + b} by the assumption of this case. Set a' = -a;
 then S' = {0, a', c, c + b}.

 And V = {r, r + b, u, u + c} = {a + c, a + c + b, u, u + c} (as

 assumed for this case), so the (-a) -transposition of V, which we
 shall call V', is {c, c + b, u - a, u - a + c}. Set u' = u - a; then we
 can express V as {c, c + b, u', u' + c}.
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 In sum, transposing, inverting, and shuffling labels has
 allowed us to express our GZ-related tetrads as forms of S' = {0, a',
 c, c + b} and V' = {c, c + b, u', u' + c}. Spanning c within S'
 involves 0, not a'. So in Case 2 here, (7.2.2) is established. Since
 Cases 1 and 2 are exhaustive, (7.2.2) is established.

 Thus we may suppose that spanning interval c within S
 involves r, not r + b ((7.2.1)), and we may also suppose that
 spanning interval c within S involves 0, not a ((7.2.2)). Thus we
 may suppose that either c = r (= r - 0), or c = -r (= 0 - r).

 7.2.3 We may suppose that c = r (and not - r).
 If c = -r, we set c = -c, and u' = u + c. Then S = {0, a, r,

 r + b} = {0, a, - c, - c + b} = {0, a, c', c + b}, while V = {r, r + b, u,

 u + c} = {-c, -c + b, (u + c) - c, u + c} = {c', c + b, u + c', u'}. By
 shuffling labels, we thus express our GZ-related tetrads as forms of
 S = {0, a, c', c + b} and V = {c, c + b, u', u' + c'}, in which c = r.
 (7.2.3) is established.

 7.2.4 Summing up our work so far, we may suppose that S = {0,
 a, c, c + b}, while V = {c, c + b, u, u + c}, where ±a, ±b, and ±c are
 all distinct.

 Now V spans interval a somehow, using either c or c + b,
 and either u or u + c.

 7.2.5 We may suppose that u, and not u + c, is involved in
 spanning interval a within V.

 Demonstration: Let V be the (2c + b)-inversion of V.
 Then V = {2c + b - c, 2c + b - (c + b), 2c + b - u, 2c + b - (u + c)}
 = {c + b, c, 2c + b - u, c + b - u}. Set u' = c + b - u. Then set V =
 {c + b, c, u' + c, u'}.

 If (u + c) is involved in spanning a within V, then we have
 the (2c + b) -inversion of (u + c) involved in spanning -a within
 V - that is, (2c + b) - (u + c), which is c + b - u, which is u', is

 involved in spanning -a within V. Since u is involved in spanning
 -a, u' is also involved in spanning a within V'. By using V instead
 of V, as a model form for one of our GZ-tetrads, we establish
 (7.2.5).

 Let us sum up so far.
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 7.2.6 We can express our GZ-tetrads as T-or-I forms of S = {0, a,
 c, c + b} and V = {c, c + b, u, u + c}, and we may suppose that u,
 not u + c, is involved in spanning interval a within V. We may
 then distinguish four possible cases. Case 1: a = u - c. Case 2: a =
 c - u. Case 3: a = c + b - u. Case 4: a = u - (c + b).

 7.2.7 In Case 1 of (7.2.6), the conclusion of the theorem
 obtains.

 PROOF: Given a = u - c, then we may substitute a + c for
 u in the expression of V. Then S = {0, a, c, c + b}, and also V = {c,
 c + b, a + c, a + 2c}. The interval-roster of S is [a, -a, c, -c, c - a, a
 - c, c + b, -c - b, c + b - a, a - c - b, b, -b], and we see the en-

 masse matching roster of V (as above) is [b, -b, a, -a, a - b, b - a, a
 + c, -a - c, a + c - b, b - a - c, c, -c]. We prune the rosters of ±a,
 ±b, and ±c; then

 (i) [c - a, a - c, c + b, -c - b, c + b - a, a - c - b] matches,
 en masse, [a - b, b - a, a + c, -a - c, a + c - b, b - a - c].
 Now c - a, on the left roster of (i) above, cannot match b - a on

 the right, (c * b.) Nor can c - a (on the left) match a + c on the
 right, (a * -a.) Nor can c - a (on the left) match -a - c on the
 right, (c^-c.) Consequently

 (ii) c - a, on the left of (i), must match a - b, or a + c - b,

 or b - a - c, on the right.
 Now c - a, in (ii), cannot match a - b. For if the two were the
 same, then we would have c + b = 2a. In that case S, which is {0, a,

 c, c + b} ((7.2.6)), would equal {0, a, c, 2a}. S would then span the
 interval a in two different ways, as a - 0, and as 2a - a. But that is

 impossible, via (5.4). And c - a, in (ii), cannot match a + c - b.
 For if the two were the same, then we would have b = 2a. In that

 case V, which equals {c, c +b, u, u + c} ((7.2.6)), would become {c,
 c + 2a, c + a, 2c + a} (because, in the present- assumption of Case 1
 of (7.2.6), u = c + a). V would then span the interval a in two
 different ways, as (c + a) - c, and as (c + 2k) - (c + a). But that is
 impossible, via (5.4). As a result of this paragraph and the last, and
 (ii) above, ?

 (iii) we must have c-a = b-a-c. <■ Hence b = 2c.
 From (i) above, we know that the roster [c - a, a - c, c + b, -c - b,
 c+ -a, a-c-b] matched, en masse, the list [a - b, b - a, a + c, -a
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 - c, a + c - b, b - a - c]. Via (iii), we can prune ±(c - a) from the
 first of these rosters, and ±(b - a - c) from the second. We obtain

 (iv) [c + b, -c - b, c + b - a, a - c - b] MEM [a - b, b - a,
 a + c, -a-c].
 Using (iii), we can substitute b = 2c into (iv). We obtain

 (v) [3c, -3c, 3c - a, a - 3c] MEM [a - 2c, 2c - a, a + c,
 -a-c].
 Now a + c, on the right of (v), must match something on the left of
 (v). We see that:

 a + c cannot match 3c on the left, for in that case we would

 have a = 2c. But b also equals 2c (via (iii) above), so S would span
 the interval a = b in two different ways, contradicting (5.4).

 a + c cannot match 3c - a on the left, for in that case we
 would infer 2a = 2c, and the interval c - a of S would be of order 2,

 contradicting (5.2).
 a + c cannot match a - 3c on the left, for in that case we

 would infer 4c = 0. Since b = 2c (via (iii)), 2b would equal 0, and S
 would span the interval b of order 2, contrary to (5.2).

 The only remaining possibility, from (v), is that
 (vi) a + c = -3c. Hence a = -4c.

 Now (v) tells us that the roster [3c, -3c, 3c - a, a - 3c] matches, en

 masse, the roster [a - 2c, 2c - a, a + c, -a - c]. Using (vi) to prune
 away ±(-3c) on the left roster, and ±(a + c) on the right, we infer
 that the roster [3c - a, a - 3c] MEM [a - 2c, 2c - a]. Substituting
 a = -4c (from (vi)), we infer that the roster [7c, -7c] matches, en
 masse, the roster [-6c, 6c]. Now we cannot have 7c = 6c. (c is not
 0.) So we must have 7c = -6c. And hence

 (viii) 13c = 0; the element c is of order 13.

 Now we can push all the way to the desired conclusion. Because
 we are assuming Case 1 of (7.2.6), we can express the tetrads S =
 {0, a, c, c + b} and V = {c, c + b, u, u + c} as S = {0, a, c, c + b} and

 V = {c, c + b, a + c, a + 2c}. (Case 1 supposes that u = a + c.)
 Because of (iii) and (vi) above, we can substitute 2c for b, and -4c

 for a; the tetrads S and V are then expressed as S = {0, 4c, c, 3c} and
 V = {c, 3c, -3c, -2c}. The 7c-inversion of S is then {7c, lie, 6c,
 4c}, while the 3c-transposition of V is {4c, 6c, 0, c}. Thus some
 OP-forms of V and S are respectively {0, c, 4c, 6c} and {4c, 6c, 7c,
 lie}.
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 Taking x = c, we see that the OP-forms of V and S are in
 the form demanded by Theorem 7.2. The theorem obtains in Case
 1, as asserted.

 We review where we are, in the proof of the theorem.

 7.2.8 We can express our GZ-tetrads as T-or-I forms of S = {0, a,
 c, c + b} and V = {c, c + b, u, u + c}, and we may suppose that u,
 not u + c, is involved in spanning interval a within V. We
 distinguished four possibilities. Case 1 : a = u - c; Case 2: a = c - u;
 Case 3: a = c + b - u; and Case 4: a = u - (c + b). We have shown
 that in Case 1 the conclusion of our theorem obtains.

 7.2.9 Case 2 of (7.2.8) cannot happen.

 PROOF: Assuming a = c - u, we can write u = c - a.
 Then we can express our GZ-tetrads S and V as S = {0, a, c, c + b}
 and V = {c, c + b, c - a, 2c - a}. The interval-roster for S is [a, -a,
 c, -c, c - a, a - c, c + b, -c - b, c + b - a, a - c - b, b, -b]; for V,
 [b, -b, -a, a, a + b, -a - b, c - a, a - c, c - b - a, a + b - c, c, -c].
 We can prune those rosters of ±a, ±b, ±c, and ±(c - a). We obtain

 (i) [c + b, -c - b, c + b - a, a - c - b] MEM [a + b, -a - b,
 c-b-a, a + b-c].
 Now c + b, on the left roster of (i), must match something on the
 right roster. We proceed as before:

 c + b cannot match a + b (on the right), since c * a.
 c + b cannot match c-b-a (on the right), for that would

 entail a = -2b. c - a would then equal c + 2b, and V, which is {c,
 c + b, c - a, 2c - a}, would become {c, c + b, c + 2b, 2c + 2b}. V
 would then span the interval b in two different ways: as (c + b) - c,
 and as (c + 2b) - (c + b). But that would contradict (5.2).

 c + b cannot match a + b - c (on the right), for that would
 entail a = 2c. Then S, which is (0, a, c, c + b}, would equal {0, 2c,
 c, c + b}, and S would span the interval c in two different ways: as
 c - 0 and as 2c - c. But that would contradict (5.2). We conclude,

 from this paragraph and the two preceding, that

 (ii) c + b must equal -a - b. Hence c - a, a non-zero
 interval of S, equals -2(a + b).

 We prune (i) above, deleting ±(c + b) on the left, and ±(-a - b) on
 the right. We get

This content downloaded from 128.151.124.135 on Fri, 15 Mar 2019 14:53:31 UTC
All use subject to https://about.jstor.org/terms



 116 Integral

 (iii) [c + b - a, a - c - b] MEM [c - b - a, a + b - c].

 We substitute c = -a - 2b, from (ii), into (iii), and we get
 (iv) [-2a - b, 2a + b] MEM [-2a - 3b, 2a + 3b].

 Now 2a + b, on the left of (iv), cannot equal 2a + 3b, on the right,
 (b cannot equal 3b, for b is not of order 2, via (5.2).) So 2a + b, on
 the left of (iv), must equal -2a - 3b, on the right. So we have

 (v) 4a = -4b; 4(a + b) = 0.
 Let us set j = 2(a + b). (ii) above tells us that j is a non-zero interval
 of S. (v) above tells us that 2j = 0. So j is of order 2. (5.2) is
 contradicted. Thus Case 2 cannot happen, as asserted in (7.2.9).

 We review where we are, in the proof of the theorem.

 7.2.10 We can express our GZ-tetrads as T-or-I forms of S = {0, a,
 c, c + b} and V = {c, c + b, u, u + c}, and we may suppose that u,
 not u + c, is involved in spanning interval a within V. We have
 named four possible cases. Case 1: a = u - c. Case 2: a = c - u.
 Case 3: a = c + b - u. Case 4: a = u - (c + b). We have shown that
 in Case 1 the conclusion of our theorem obtains, and that Case 2

 cannot happen.

 7.2. 1 1 Case 3 cannot happen.
 Under the assumption of Case 3 (that a = c + b - u), we

 have u = c + b - a. Consequently we can express our GZ-tetrads as
 S = {0, a, c, c + b} and V = {c, c + b, u, u + c} = {c, c + b, c + b - a,
 2c + b - a}. S's interval-roster is [a, -a, c, -c, c - a, a - c, c + b,
 -c - b, c + b - a, a - c - b, b, -b], and the interval-roster of V is [b,
 -b, b - a, a - b, -a, a, c + b - a, a - c - b, c - a, a - c, c, -c].
 Pruning away ±a, ±b, ±c, ±(c - a), and ±(c + b - a) from both
 rosters, we get

 (i) [c + b, -c- b] MEM [ b - a, a- b].

 Now c + b, on the left of (i), cannot match b - a on the right. Since
 S = {0, a, c, c + b}, c cannot equal -a; if c did equal -a, then S
 would span the interval -a in two different ways, as 0 - a, and as
 c - 0. That would contradict (5.4).

 And c + b, on the left of (i), cannot match a - b on the
 right. That would entail c = a - 2b; then S, which is {0, a, c, c + b},
 would equal {0, a, a - 2b, a - b}, and S would span the interval b in
 two different ways, as a - (a - b), and as (a - b) - (a - 2b). That
 would contradict (5.4).
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 So (i) above is impossible, and Case 3 indeed cannot
 happen. We review where we are now, in the proof of our
 theorem.

 7.2.12 We can express our GZ-tetrads as T-or-I forms of S = {0, a,
 c, c + b} and V = {c, c + b, u, u + c}, and we may suppose that u,
 not u + c, is involved in spanning interval a within V. Four possible

 cases were distinguished. Case 1: a = u - c. Case 2: a = c - u. Case
 3: a = c + b - u. Case 4: a = u - (c + b). We have shown that in
 Case 1 the conclusion of our theorem obtains, and that Case 2

 cannot happen, and that Case 3 cannot happen.

 7.2.13 In Case 4, the conclusion of the theorem obtains.

 We could apply a lot of transformations to put Case 4 into
 the format of Case 1, but I think it will be useful for a reader to go
 over Case 4 as it stands in (7.2.12).

 Under the assumption of Case 4 (that a = u - (c + b)), we
 have u = a + b + c. Consequently we can express our GZ-tetrads as
 S = {0, a, c, c + b} and V = {c, c + b, u, u + c} = {c, c + b, a + b + c,
 a + b + 2c}. We obtain the interval-roster for S: [a, -a, c, -c, c - a,
 a - c, c + b, -c - b, c + b - a, a - c - b, b, -b]. Vs interval-roster is

 [b, -b, a + b, -a - b, a, -a, a + b + c, -a - b - c, a + c, -a - c, c, -c].

 Pruning away ±a, ±b, and ±c from both rosters, we get
 (i) [c - a, a - c, c + b, -c - b, c + b - a, a - c - b] matches,

 en masse, [a + b, -a - b, a + b + c, -a - b - c, a + c, -a - c].

 Now c - a, on the left roster of (i), must match something on the
 right roster, c - a cannot match -a - b, for c ^ -b. (S cannot span
 interval c in two different ways.) And c - a cannot match c + a, for

 -a is not equal to a. (S spans no interval of order 2.) And c - a
 cannot match -a - c, for c does not equal -c. (S spans no interval
 of order 2.) We then conclude

 (ii) c - a, on the left side of (i), either equals a + b on the
 right, a + b + c on the right, or -a - b - c on the right.

 Now c - a cannot equal a + b + c. For if that were the case, then V,
 which is {c, c + b, a + b + c, a + b + 2c} (under the assumption of
 Case 4), would equal {c, c + b, c - a, 2c - a}. But then V would
 span the interval a as c - (c - a), and V would span the interval a in
 another way, as (c - a) - (c + b), or (a + b + c) - (c + b). However,
 V does not span the interval a in two different ways.
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 Furthermore, c - a cannot equal -a - b - c. For if that
 were the case, we could infer c + b = -c; then S = {0, a, c, c + b}

 would equal {0, a, c, -c}, and S would span the interval c in two
 different ways, as c - 0, and as 0 - (- c).

 The above two paragraphs, along with (ii) above, enable us
 to conclude that

 (iii) c - a must equal a + b.
 We can then prune (i) above, removing ±(c - a) on the left roster,
 and ±(a + b) on the right. We obtain

 (iv) [c + b, -c - b, c + b - a, a - c - b] matches, en masse,
 [a + b + c, -a - b - c, a + c, -a - c].

 From (iii) we infer that c = 2a + b. Substituting 2a + b for c
 throughout (iv), we have

 (v) [2a + 2b, -2a - 2b, a + 2b, -a - 2b] MEM [3a + 2b,
 -3a-2b,3a + b,-3a-b].
 Now a + 2b, on the left of (v), must match something on the right
 of(v).

 a + 2b cannot match 3a + 2b (for that would entail 0 = 2a,
 and a cannot be of order 2).

 a + 2b cannot match -3a - 2b on the right. For that
 would entail 4(a + b) = 0. Set j = 2(a + b); then j would be of order
 2. But j is an interval of S. (j appears on the left roster of (v).)
 This cannot happen.

 a + 2b cannot match -3a - b on the right. For that would
 entail 4a + 3b = 0, whence 2(2a + b) + b = 0, whence (via (iii)
 above) 2c + b = 0. But then V = {c, c + b, a + b + c, a + b + 2c}
 (7.2.13, paragraph 2), would be {c, c + b, a + b + c, a}, and V
 would have elements c, c + b, and a in common with set S = {0, a,

 c, c + b}. But S and V do not have three common elements (by the
 assumption of Theorem 7.2). So this cannot happen. In light of
 this paragraph, plus the two preceding paragraphs, we conclude
 that

 (vi) a + 2b must equal 3a + b, whence b = 2a.
 From (iii) above, we infer that c = 2a + b. So c = 2b = 4a.

 The second paragraph of (7.2.13) gives our GZ-tetrads, in
 the present case (Case 4), as set S = {0, a, c, c + b} and V = {c, c + b,
 a + b + c, a + b + 2c}. Substituting b = 2a and c = 4a throughout,
 we can express the tetrads as S = {0, a, 4a, 6a} and V = {4a, 6a, 7a,
 lla}.
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 And, taking x = a, that is exactly a form demanded by
 Theorem 7.2, which theorem is therefore satisfied in Case 4.

 We have finished: Theorem 7.2 is true in Case 1 (Step
 7.2.7); the theorem is also true in Case 4 (7.2.13); Cases 2 and 3
 cannot happen (7.2.9 and 7.2.1 1).

 8. A neatly organized summary of all the above.

 8.1 Let G be a commutative group (any commutative group
 whatsoever). Let S and V be GZ-related tetrads of elements from

 G. We define S and V to be of Category 1 when they can be
 transformed by T-or-I operations so that they have three members
 in common. We define S and V to be of Category 2 when they are
 not of Category 1 , and when there exist group-elements a and b so
 that S can be expressed as the union of an a-dyad with a b-dyad,
 and V can also be expressed as the union of an a-dyad with a b-
 dyad. We define S and V to be of Category 3 when they are not of
 Category 1, and not of Category 2.

 The three Categories, as defined just above, are exhaustive:
 GZ-related tetrads S and V must be in one (and only one) of the
 three Categories.

 8.2 We have proved (in (3.3) and (4.2)) that S and V are of
 Category 1 if, and only if, there exist group elements g and k, and
 T-or-I operations OP and OP7, such that g is of order 4, k is not a
 multiple of g, k is not of order 2, 2k is not equal to 2g, S = OP({0,
 2g, k - g, k}). and V = OF ({0, 2g, k, k + g}).

 8.3 We have proved (in (6.2)) that S and V are of Category 2
 if, and only if, there exists an element a of order 4, and another
 element r of order 4, such that the only common multiple of a and
 r is the 0-element, and there exist T-or-I operations OP and OP',
 suchthat S = OP({0, a, r, -r - a}), while V = OP' ({0, a, -r, r - a}).

 8.4 We have proved (in (7.2)) that S and V are of Category 3
 if, and only if, there exists an element x of order 13, and T-or-I
 operations OP and OP', such that either S = OP({0, x, 4x, 6x}) and

This content downloaded from 128.151.124.135 on Fri, 15 Mar 2019 14:53:31 UTC
All use subject to https://about.jstor.org/terms



 120 Integral

 V = OP' ({4x, 6x, 7x, 1 lx}), or else V = OP({0, x, 4x, 6x}) and S =
 OP'({4x,6x)7x>llx}).

 8.5 Along the way, we observed (in (5.4)) that if S and V are
 not of Category 1, then S can span no non-zero interval in two
 different ways. In particular then (as per (5.2)), S has no interval of
 order 2.
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