
 Aspects of Recursion in M-Inclusive Networks

 Robert W. Peck

 1. Introduction

 We examine transformational schemes that incorporate Mn
 operations,1 with the intention of building recursive networks-of-
 networks.2 In the process, we discuss K-net isographies, Lewin's
 RECURSE group,3 and isographies that derive from inner and
 outer automorphisms4 of the T/M group,5 all of which present
 certain difficulties in realizing our goal. Ultimately, we define a
 group of graphic transformations that is isomorphic to T/M. This
 group allows us to model pitch-class networks recursively as
 networks-of-networks, and so on.

 Mn and MIn operations both exchange interval-classes (ics) 1
 and 5. For this reason, they are particularly germane in
 transformational analysis of music that incorporates interactions
 between diatonic spaces - or, more generally, the circle-of-
 fourths/fifths spaces of which diatonic spaces are connected

 Throughout this study, we use the notation Mn and MIn for multiplicative
 operations. Specifically, Mn obtains from multiplication by 5, followed by
 transposition by n (modulo 12). MI,, uses multiplication by 7, followed by
 transposition by n (modulo 12).

 Networks-of-networks(-of-networks, etc.) were first described in Lewin 1990,
 93-97. See also Lambert 2002, 181-82.

 3 Lewin 1990, 117-20.

 The Glossary at the end of this article contains definitions of mathematical
 terms - such as inner and outer automorphisms - which are not encountered
 commonly in music-theoretical discourse.

 We use the notation T/M to signify the group of Tn and Mn operators (similar to

 the common practice of using T/I to represent the group of Tn and In operators).
 The reader is cautioned not to confuse this notation with Lewin 1990, 1 17, where

 MT/MM is the group of forty-eight twelve-tone operators (including the Tns, Ins,

 Mns, and MIns). We use the notation TTO4g for the latter, following Morris
 1987.
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 26 Integral

 segments6 - and chromatic spaces. The groups T/M and T/MI
 alone, but not together,7 are also especially relevant in the analysis
 of music that does not incorporate inversion structurally.

 Morris discusses an important feature of the twelve-tone
 operators (TTOs)8 (Appendix, Table A.I): Tn and In operations
 preserve distances among pitch-classes (pcs) in pc-space; as such,
 they also preserve the ratios of those distances. Mn and MIn
 operations, on the other hand, preserve the ratios, but not
 necessarily the distances. For example, pcset {0,1,3}, a member of
 set-class (sc) 3-2 [01 3], contains intervals that belong to ics 1, 2, and

 3. The image of this pcset under any Tn or In operator is also a
 member of 3-2 [01 3], and preserves the distances of those intervals
 in pc space. Clearly, these operations also preserve the ratios of
 those distances (i.e., intervals from ic 1 are 1/12 of an octave in pc
 space, those from ic 2 are 1/6, and those from ic 3 are 1/4). In
 contrast, the image of {0,1,3} under either Mn or MIn is a member
 of sc 3-7[025], whose members contain intervals that belong to ics
 2, 3, and 5. Whereas the distances of the intervals from ics 2 and 3

 are preserved, the interval from ic 1 maps to an interval from ic 5,
 not preserving distance. Nevertheless, the ratios of all intervals are
 indeed preserved; in particular, we note that intervals from both ics

 1 and 5 are l/12th of an octave in pc space.9 In hearing Mn and
 MIn operators, we must concentrate on these ratios, and not on
 specific distances.

 2. Toward M- and Mi-inclusive Networks

 In transformation theory that incorporates networks, such
 networks must be well-formed; that is, their various
 transformational pathways must be equal.10 For instance, any two

 Clough, Engebretsen, and Kochavi 1999, 76 list the usual diatonic as an example
 of a generated set. As such it is (a segment of) a cyclic set that is generated by a
 single interval (from ic 5).

 The product of any two Mn and MIn operators is some In.

 Morris 2001, 52.

 9 See Peck 2002, 159-61 for a related discussion.

 O'Donnell 1998, 57 discusses further the concept of well-formedness in K-nets.
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 M-Inclusive Networks 27

 edges of a trichordal graph must combine appropriately to equal
 the third. Using an L-net,11 Example la interprets the pcset
 {9,11,0}. Here, C moves to B via Tn, and B moves to A via T10.

 These two operators, Tn and T10, must combine to equal the same
 operator, T9, which moves C to A; in fact, (T1O)(TU) = T9, as TxTy
 = Tx «. y.12 The remaining figures in Examples 1 display all the other
 possible L-net interpretations of the set.13
 The well-formedness condition must also hold if we use other

 types of operators in addition to Tn. In K-net theory, for instance,

 any trichordal graph must contain one Tn arrow and two In
 arrows.14 Its two In operators combine then to form its Tn operator,

 as IxIy = Tx . y (and IyIx = T_(x _ y)). Furthermore, its Tn operator and
 either of its In operators form together the remaining In operator, as

 Tx _ yly = IyT.(x _ y) = Ix and IXTX _ y = T_(x _ y)Ix = Iy. Example 2
 reinterprets the above trichord, showing the six possible
 combinations of Tn and In arrows.15 These six networks divide into

 three pairs (Examples 2a and b, c and d, and e and f) whose
 members have the same Generalized Interval System (GIS)
 content.16 Together with Example 1, this figure suggests the

 11 O'Donnell 1998, 53 labels Tn-only networks, such as one finds in Lewin 1987,
 as "L-nets," for "Lewin networks." He then uses "K-nets" for "Klumpenhouwer
 networks," which incorporate both Tn and In operators. Henceforth we will use
 these abbreviations.

 We use left-functional orthography in this study, following the standard
 practice for compositions of TTOs in the music- theoretical literature. That is, the

 composition ab means: "do b first, then do a."

 For a trichordal L-net, wherein each of the three arrows may move either of two

 directions, we find 23 = 8 possible interpretations.

 14 O'Donnell 1998, 57.

 For a Tn and In trichordal network, we find only six possible interpretations. To

 preserve well-formedness, only one of the three edges may be represented by a Tn

 arrow. The remaining In arrows represent involutions; as such, we cannot
 distinguish their direction (and we give them typically as double arrows).
 Consequently, as the Tn arrow may represent one of three edges, and may move in

 either of two directions, we find 3-2 = 6 well-formed interpretations.

 Each pair contains graphs that associate the same edge with a Tn arrow, with
 one Tn arrow that goes one direction and the other the opposite. Then, the
 members of these pairs possess the same total GIS interval content. Recall that for

 a GIS (S, IVLS, int), int is a function that maps the Cartesian product of a set, S X
 S, to a group IVLS. Therefore, as (a,b) and (b,a) are members of S X S, for any a,b
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 28 Integral

 considerably large number of interpretations of a pcset available to
 an analyst who uses transformational networks. Indeed, the choice
 of network - that is, the interpretation - is an important part of the

 process of network analysis.17

 We may extend the concept of well-formedness to graphs that
 incorporate Mn and MIn operators as well (the rules of combination
 are listed in Table A.2). Example 3 shows various further
 interpretations of the above trichord, all of which are well-formed.

 Reference to the cycles of the Mn and MIn operators acts as an aid
 (Table A.I). We note the Tn, M9, and M2 operators in Example
 3a. The cycle of M9 from pc 0 is (0, 9, 6, 3). The cycle of M2
 from pc 9 is (9, 11). The latter is an involution, so the M2 arrow in
 Example 3a is double-headed, the same as an In operator's. In
 combination, M2M9 = T2 + (5 . 9) = Tn, whose cycle from 0 is (0, 11,

 10, ..., 1). In the same way, we can examine the remaining graphs
 in the example, and this list is certainly not exhaustive.
 Furthermore, in addition to trichordal graphs, the concept of well-
 formedness extends to graphs of any size.

 Whereas recursion need not be the ultimate goal in a
 transformational theory, its functioning in music analysis - for
 example, in certain aspects of Schenkerian analysis, or in
 Schoenberg's concept of Grundgestalt - is often telling of the
 relationship between larger- and smaller-scale structures in a piece
 of music. For that reason, we seek a system of recursive modeling
 for our M-inclusive networks. In network analysis in general,
 recursion works in the following way: a set of networks represents a
 set of interpretations, and these interpretations may share some
 degree of structural identification.18 On a subsequent hierarchic

 € S, the GIS interval content - that is, the images of the members of S X S in
 IVLS- of any graph contains its labeled operators as well as their inverses. See
 Lewin 1987, 24-30 for further discussion of GISs.

 Lewin 1990 and 1994 deals significantly with the issues of choosing appropriate
 interpretations in K-net analysis.

 Indeed, network analysts often choose network interpretations to reflect such
 associations.
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 M-Inclusive Networks 29

 Example 1. The eight possible L-nets of {9,11,0}.

 Example 2. The six possible K-net interpretations of {9, 1 1, 0},

 Example 3. Some further well-formed interpretations of {9, 1 1, 0}.
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 30 Integral

 level, one may relate these interpretations in terms of this
 identification; that is, the analyst interprets the networks
 themselves in a particular way. Again, structural identifications
 may exist between this process of interpretation and those of the
 individual networks, and such conformity results in analytical
 recursion.19 The types of relationships that may exist between the
 two levels vary, but in network analysis they include most often the

 same number of interpretative acts, corresponding lengths of the
 cycles of these interpretations, and corresponding results of
 combinations of various interpretive acts.20

 In considering hyper-operators that share a structural
 identification with the Mn operators, we recall our previous
 discussion of distance and ratio. Hyper-Mn operators do not
 necessarily need to preserve the specific distances among
 interpretations within cycles, but they need to preserve the ratios of

 these distances. Again, in hearing hyper-Mn operations, one must
 focus on these ratios.

 3. Isography and <u, j, p>-nets

 In K-net theory, analysts describe such recursive relationships
 as graph isomorphisms and isographies.21 Lewin defines isography
 between two networks in terms of the following three features: "(1)
 They must have the same configuration of nodes and arrows. (2)

 9 For a related discussion, see Lewin 1990, 93-97.

 Whereas "the same number of interpretative acts" is self-explanatory, "the
 lengths of the cycles of these interpretations** and "results of combinations of
 various interpretive acts" may not be so. We may interpret network A in terms
 that relate it to network B, then interpret B in precisely the same way, relating it to

 C. The length of the cycle of interpretations is the number of the same
 interpretive acts it would take ultimately to relate some subsequent network N to
 A. If we interpret network X in terms that relate it to network Y, then interpret Y
 in terms (not necessarily the same) that relate it to Z, we have a product of
 interpretations from X to Z. This product is the result of combinations of various
 interpretive acts.

 Graph isomorphisms relate graphs without defined node content. Once we
 define the contents of the nodes, the graphs become networks, which we relate by
 isographies.
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 M-Inclusive Networks 3 1

 There must be some isomorphism F that maps the transformation-
 system used to label the arrows of one network, into the
 transformation-system used to label the arrows of the other. (3) If
 the transformation X labels an arrow of the one network, then the

 transformation F(X) labels the corresponding arrow of the other."22

 The crux of the concept of isography lies in the isomorphisms
 that map one transformation-system to others. Among networks
 that use the same group G of operators, these isomorphisms derive
 from the group of automorphisms of G, AUT(G). For the T/I
 group used traditionally in K-net analysis, AUT(T/I) contains the
 forty-eight unique mappings of T/I onto itself that satisfy the above
 condition. Lewin defines its forty-eight mappings in terms of an
 ordered duple <u, j>, where u = 1, 5, 7, or 11, and j is an integer
 modulo 12.23 This duple permits distinct actions on the Tn and In
 operators. Specifically, the image of any Tn operator under <u, j> is

 Tun, and the image of any In operator is Iun + j. Accordingly, the
 graph of a K-net - that is, in terms of its labeled arrows, and
 without regard to node content - has potentially forty-eight
 isomorphic counterparts, including itself. In fact, AUT(T/I) is
 isomorphic to TTO48.24

 Whereas forty-eight automorphisms of the T/I group exist, we

 find ninety-six automorphisms of TTO48. Therefore, graphs that
 incorporate Mn and MIn operators, in addition to Tns and Ins, have
 potentially ninety-six isomorphic counterparts. Lewin gives these
 automorphisms in the form of an ordered triple <u, j, p>, where u
 = 1, 5, 7, or 1 1, j is an even integer modulo 12; and p is a multiple
 of 3 modulo 12.25 Lewin's reason for using this triple, rather than
 the above duple, is that it permits distinct actions on the Tn, Mn,
 MIn, and In operators as follows: <u, j, p>Tn = Tun, <u, j, p>Mn =
 Mun + j, <u, j, p>MIn = MIun +p, and <u, j, p>In = Iun +j + p.26

 22 Lewin 1990,87.

 Ibid., Appendix A.

 The isomorphism of AUT(T/I) to TTO48 can be seen as follows. TTO48 may
 be generated by T,, Mo, and MI0. Then, AUT(T/I) may be generated similarly by
 <1,1>, <5,0>, and <7,0>, which have the same structure as T,, Mo, and MI0.

 25Lewinl990, 118-19.

 We note that AUT(TTO4g) is isomorphic to the abstract direct product group
 D6 X Dg X C2 (where Dn is the dihedral group of order n; see Glossary). Consider
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 32 Integral

 Examples 4a-e show some tetrachords from the Introduction to
 Igor Stravinsky's The Rite of Spring,17 and Examples 5a-e provide
 <u, j, p>-isographic networks that interpret their pcsets. These
 networks do not incorporate In arrows. Rather, we interpret their
 tetrachords with Tn and Mn operators. Example 5a relates to 5b by
 <1, 8, p>, to 5c by <5, 0, p>, to 5d by <5, 8, p>, and to 5e by <1,
 2, p>, where p is any multiple of 3 modulo 12. We cannot be
 more precise about the value of p at this stage, because it is used
 only in determining the mappings of MIn and In operators, neither

 of which appears in the graphs of the example. In going from
 Example 5a to 5c, for instance, the T5 operators of the former
 network map to T5 . 5 = Tt in the latter, hence u = 5. Then, the M2

 and Mlo operators of the former map respectively to M(5 . 2) ♦ o = M10

 and M(5 . 10) + 0 = M2 in the latter, hence j = 0. Still, the choice of p
 does not influence either of these mappings; we could use <5,0,0>,
 <5,0,3>, <5,0,6> or <5,0,9> equivalently.
 The networks' underlying pcsets might help to refine our

 specific choices for the variable p. For instance, the 4-23 [0257]
 tetrachord of Example 5a relates to the 4-1 [01 23] tetrachord of
 Example 5c as pcsets by Mo, which is an involution. Then, if we
 want to draw a <u, j, p> isography between the networks in
 Examples 5a and c that reflects this structural property - one that is
 also an involution - we must choose either <5,0,0> or <5,0,6>, as
 <5,O,3> and <5,0,9> are both of order 4.28

 the following three subgroups: the first, generated by <l,4,0> and <5,0,0>, is
 isomorphic to D6. The second, generated by <l,0,3> and <7,0,0>, is isomorphic
 to Dg. The third, generated by <l,6,0>, is isomorphic to C2. Then, any member
 <u, j, p> of AUT(TTO48) is uniquely the product of one element from each of
 these three subgroups.

 Here and elsewhere in this article, we use musical examples from the
 Introduction to The Rite of Spring. We do not, however, attempt a comprehensive
 analysis of the Introduction, which is outside the scope of this study.

 The order of <u, j, p> can be determined by the following formula. Let Zl2 be
 the integers modulo 12. Then, |<u, j, p>| is the least common multiple of the
 orders of uZ,2, uZl2 + j, uZl2 + p, and uZ,2 + j + p. Hence, when we assert that
 <5,0,0> has order 2, we observe that 5Z12 has cycles of order 2 (for u = 5), and
 5ZI2 + 0*2 also has cycles of order 2 (for j = p = (j + p) = 0); the least common
 multiple of 2 and itself is 2. Similarly, we claim |<5,0,3>| = 4. Specifically, the
 cycles of 5Zl2 are of order 2 (for u = 5), the cycles of 5Zl2 + 0 are of order 2 (for j
 = 0), the cycles of 5Z,2 + 3 are of order 4 (for p = 3), and the cycles of 5Z,2 + 0 + 3
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 M-Indusive Networks 33

 Example 4. Some tetrachords from the Introduction to

 The Rite of Spring.

 ©1912, 1921 by Hawkes & Son (London) Ltd. Copyright Renewed.

 Reprinted by permission of Boosey & Hawkes, Inc.

 Example 5. <u,j, p>-isographic networks of Examples 4a-e.

 Example 6. Recursive hyper-network of Examples 5a-d.
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 34 Integral

 Similarly, the 4-23[0257] tetrachord in Example 5a relates to
 the 4-23 [0257] tetrachord in Example 5b by T7 as pcsets.29
 Consequently, we might choose a <u, j, p> isography of order 12
 between them to reflect the structure of T7 as a TTO. The T5
 operators of the former network map to T5 . x = T5 in the latter, so u

 = 1. The M2 and Mlo operators of the former map respectively to
 M(i . 2) + 8 = M10 and M(1 . 10) + 8 = M6 in the latter, so j = 8. Then, as
 <1,8,6> and <l,8,0> are of orders 6 and 3, respectively, we must
 decide between <1,8,9> and <1,8,3>, both of which are of order

 12. We will next discover a method for refining our decisions even
 further.

 4. The Recurse Subgroup of AUT(TTO48)

 One of the most elegant features of traditional K-net analysis is

 its ability to relate networks recursively via a labeling system for
 isographies that shows clearly their structural identification with the

 twenty-four Tn and In operators. Klumpenhouwer gives these
 isographies as hyper-operators in the form <Tj> and <Ij>.30 Under
 <Tj>, Tn maps onto itself, and In maps onto In + }; under <Ij>, Tn
 maps onto Tlln, and In maps onto IUn + y These twenty-four hyper-
 operators form a subgroup of AUT(T/I) that is isomorphic to T/I
 itself, showing a structural correspondence among the network level
 and the network-of-networks level. We will label this

 automorphism subgroup HYP(T/I).
 HYP(T/I) is isomorphic to a particular subgroup of

 AUT(TTO48), which we will label IMG(T/I). Using a restricted
 version of Lewin's <u, j, p> triple, we may give IMG(T/I)'s
 members as follows: u = 1 or 11; j is a multiple of 4 modulo 12;

 are of order 4 (for j + p » 3). The least common multiple of 2 and 4 is 4. We
 could work similar calculations for <5,O,6> and <5,0,9>.

 Examples 4a and b are represented in Kielian-Gilbert 1982-83, 215-16, where
 she finds a large-scale T7 cycle of 4-23 [0257] pcsets in the Introduction to The
 Rite of Spring. In particular, see her Examples 6c and d.
 in

 Klumpenhouwer 1991. Lewin 1990, 88-89 gives these hyper-operators as <1, j>
 and <11, j>, respectively. Later, in Lewin 1994, he adopts Klumpenhouwer's
 notation.
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 and p is a multiple of 3 modulo 12.31 It is important to note,
 however, that HYP(TVI) itself is not equal to IMG(T/I), nor is it a
 subgroup of AUT(TTO48). The two groups HYP(T/I) and
 IMG(T/I) act on different sets: T/I and TTO48, respectively.
 Nevertheless, the action of IMG(T/I) on Tn and In operators
 (disregarding its action on Mns and MIns) is precisely the same as
 that of HYP(T/I). We will call this relation CORRELATE(T/I).
 Like HYP (T/I), AUT(T/I) is isomorphic to a particular

 subgroup of AUT(TTO48), noting again that they act on different
 sets. We will call this subgroup RECURSE, following Lewin 1990.
 We may give its members in terms of a somewhat less restricted <u,

 j, p> triple: u = 1, 5, 7, or 11; j is a multiple of 4 modulo 12; and p
 is a multiple of 3 modulo 12 (Table A.3).
 To label isographies of M- and Mi-inclusive networks

 recursively in a manner analogous to HYP(T/I), it is necessary to
 find a subgroup of AUT(TTO48) to which TTO48 itself is
 isomorphic, and to assign hyper-operators to its members.
 RECURSE is precisely such a subgroup. As TTO48 is isomorphic
 to AUT(T/I), and AUT(T/I) is isomorphic to RECURSE, it
 follows that TTO48 is also isomorphic to RECURSE. (Table A.3
 gives the correspondences of the members of RECURSE to <Tn>,
 <Mn>, <MIn>, and <In> hyper-operators.)
 Example 6 places the first four tetrachordal networks from

 Example 5 into a hyper-network. The nodes of this network
 represent the graphs of those tetrachords, and its arrows correspond
 to the unique hyper-operators from RECURSE that relate them.
 Moreover, the graph of Example 6 is isomorphic to any one of the
 graphs in Example 5, showing a degree of structural identification
 among the respective levels of the examples. The association of
 Example 5's operators with Example 6's hyper-operators allows us
 to refine our choice from among the possible <u, j, p> isographies
 we saw above - that is, from among corresponding network
 interpretations - more efficiently than our efforts at the end of §3.

 Nevertheless, Example 5e, which is isographic to the other figures,
 does not relate to the others in Example 5 by some member of

 The rationale for j's being a multiple of 4, and p's being a multiple of 3, is that
 any integer modulo 12 obtains uniquely by the addition of some j and p (see
 Lewin 1990, 119-20).
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 RECURSE. Consequently, we cannot as yet label its isographies to
 the other networks with <Tn>, <Mn>, <MIn>, or <In> hyper-
 operators, but rather only with certain other members <u, j, p> of
 AUT(TTO48). In the following sections, we will address this and
 similar issues.

 5. Choosing an Appropriate Group of Transformations

 Although Mn and MIn both exchange ics 1 and 5, the order 24
 T/M and T/MI subgroups of TTO48 have different algebraic
 structures. T/M is isomorphic to the abstract group D6 X C4, while
 T/MI is isomorphic to D8 X C3.32 These distinct structures have
 consequences for network analysis. For example, the groups have
 different centers: Z(T/M) = {T0,T3,T6,T9} is a cyclic group of order
 4, while Z(T/MI) = {To,T2,T4,T6,T8,Tlo} is a cyclic group of order
 6. As we will see, this variation impacts the number of distinct set-

 classes that may be represented by strongly isographic33 T/M and
 T/MI-nets; therefore, it also impacts the K-classes to which such
 networks belong.34

 Example 7 demonstrates the traditional T/I K-class for
 Example 2a.35 We note that this K-class contains six different set-

 Dm X Cn is the direct product of the dihedral group of order m and the cyclic
 group of order n. That T/M is isomorphic to D6 X C4 can be seen in the
 following terms: T/M contains a subgroup that may be generated by T4 and Mo,
 {To, T4, Tg, Mo, M4, Mg}, and this subgroup is isomorphic to D6. T/M also
 contains a subgroup that may be generated by T3, {To, T3, T6, T9}, isomorphic to
 C4. Note that these two subgroups intersect only trivially; that is, merely in To,
 the identity element. Then, any element of T/M is the unique product of an
 element from one subgroup and one from the other. Similar situations relate
 T/MI to D8 x C3 and TTO48 to D8 x D6.

 Lewin 1990, 84 cites the concept of strong isography from Klumpenhouwer
 1991 as follows: two networks are strongly isographic if their underlying graphs
 are strictly identical. "That is, the configuration of nodes and arrows are the same,

 and so are the transformations associated with corresponding arrows. "

 O'Donnell 1997, 38-39 discusses K-classes. Lambert 2002, 168-71 and 191-95
 revisits the issue, detailing the set-class membership of all trichordal K-classes.

 Lambert 2002, 191-95 implies that different interpretations of a pitch-class set
 may lead to different K-classes.
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 classes, the maximum number for a T/I K-class.36 Lambert
 describes T/I K-classes in terms of cyclic wedges37 (Example 8
 shows the cyclic wedge for the networks in Example 7),38 and
 "when the cyclic projections reach their midway points, they have
 moved from their starting points by equivalent distances, six
 semitones. Thus, the set-class memberships begin to repeat
 themselves halfway through at the tritone; any set in one half has a

 T6 partner in the other. As a result, a K-class can contain
 representatives of no more than six different set classes."39

 We may observe this same phenomenon in a related way. The
 T/I group is isomorphic to D24. As such, its center, Z(T/I), is a
 cyclic group of order 2, and consists of {T0,T6}. Then, K-nets
 whose pcsets relate by some member in Z(T/I) (and that have the
 same configuration of nodes and arrows) are strongly isographic.
 Therefore, as the K-class is formed by a twelvefold cyclic wedge,
 and as Z(T/I) contains two members, we find (at most) 12/2 = 6
 set-classes represented.
 Similarly to Example 7, Examples 9 and 10 show K-classes for

 two additional interpretations of this same trichord, now using
 members from T/M and T/MI, respectively. As with T/I K-classes,
 we may observe their construction in terms of cyclic wedges.
 Examples 11 and 12 show these wedges for Examples 9 and 10,

 Lambert 2002, 191-95 deals with K-classes primarily in terms of trichordal
 networks. The concept, of course, may be generalized to larger networks, as seen
 in the tetra- and hexachordal K-classes in his Examples 19 and 21.

 37 Lambert 2002, 169-70.

 38 Examples 7 and 8 belong to K-class 9/8 as defined in Lambert 2002, 192.
 Furthermore, he, along with the other authors in Music Theory Spectrum % Fall
 2002 issue devoted to K-nets, observes the relation of K-net isography to Perle
 cycles. Specifically, the latter obtain from inversionally interlocked interval cycles,

 such as those in the cyclic wedge of Example 8 (which belongs to Perle's [1996]
 row pair 9/2).

 Lambert 2002, 170 (n. 12) thanks an anonymous referee of his article for
 pointing out the "correlation between the degree of symmetry of a set-class and the

 multiplicity or redundancy of set-class members in each K-class. w
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 Example 7. T/I K-class.

 Example 8. T/I K-class as a cyclic wedge.

 Example 9. T/M K-class.
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 Example 10. T/Ml K-class.

 Example 11. TIM K-class as a cyclic wedge.

 Example 12. T/M I K-class as a cyclic wedge.
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 respectively. As in Example 8, the Tu-related dyad in Example 11
 moves downward by semitone. However, unlike Example 8, in
 which the third, inversionally related pc moves upward by
 semitone, the remaining pc in Example 11 moves upward by
 perfect fifth. In Example 12, it moves upward by perfect fourth.40
 We observe that, as in the T/I K-class, the set-class memberships of

 the T/M and T/MI examples repeat themselves halfway through at
 the tritone, or every six networks. However, they also repeat more

 frequently: the set-classes of the T/M examples repeat every three
 networks, and those of the T/MIs repeat every two.
 One explanation for this increase in set-class replication has to

 do with the centers of the various groups mentioned above. In the
 case of T/M, its center consists of {T0,T3,T6,T9}. Consequently,
 T/M networks whose pcsets are related by some member in
 Z(T/M) (and that have the same configuration of nodes and
 arrows) are strongly isographic. As a result, T/M K-classes are
 limited to 12/4 = 3 set-classes. In terms of T/MI K-classes, where

 Z(T/MI) = {T0,T2,T4,T6,T8,T10}, the set-class membership is
 limited even further to 12/6 = 2. Depending on our analytical
 purpose, we may choose to use T/M-nets or T/MI-nets to show
 different sets of relations. If we are seeking to show strong
 isographies among networks whose underlying pcsets are in a
 greater number of set-classes - such as in the examples we have
 taken from The Rite of Spring - then T/M-nets will be more
 appropriate. If our intention is instead to demonstrate a greater
 number of possible isographies among networks that project fewer
 set-classes, then T/MI networks will be more useful.41

 6.TheAUT(T/M)Group

 As in their traditional T/I counterparts, isographies among
 T/M-nets derive from automorphisms of their underlying group of

 In terms of the Perle-cyclic model, the interlocking interval cycles of Examples
 1 1-12 are not inversionally related. They are instead related by multiplication by
 5 and 7, respectively.

 Examples with more limited set-class membership, such as some of the pieces in
 Bart6k's Mikrokosmos, might suggest the use of T/MI networks.
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 transformations. Hence, the structure of AUT(T/M) is of interest.

 Whereas AUT(T/I) contains forty-eight elements, AUT(T/M)
 contains only twenty-four. (Table A.4 shows its members as
 mappings of T/M onto itself.) Perhaps unfortunately for the
 analyst who is seeking recursive levels, AUT(T/M) is not
 isomorphic to T/M itself; rather, it is isomorphic to the abstract
 group D6 x C2 X C2.42 Furthermore, being the same size as T/M, it
 does not contain a proper subgroup that is isomorphic to T/M (as
 is the case with AUT(T/I), wherein the subgroup HYP(T/I) is
 isomorphic to T/I). As a result, we must look elsewhere for a
 complete source of recursive isographies - namely, a group we will
 call HYP(T/M).

 One seemingly logical point of departure for this search might
 be within AUT(TTO48). We recall the CORRELATE(T/I)
 relation from §4: T/I is isomorphic to a subgroup IMG(T/I) of
 AUT(TTO48), and the action on Tn and In operators alone under
 IMG(T/I) is precisely the same as HYP(T/I). Similarly, we will
 now try to find a subgroup of AUT(TTO48) that is isomorphic to
 T/M, and whose action on Tn and Mn operators is the same as that
 ofAUT(T/M). We will call this relation CORRELATE(T/M). A
 potential place to find such a subgroup is in RECURSE, which has
 images of all forty-eight TTOs. One subgroup, which we will call
 IMG(T/M) (the first twenty-four rows in Table A.3), contains the
 twenty-four hyper-operators that are counterparts to the various
 Tns and Mns. Therefore, as IMG(T/M) is isomorphic to T/M, it
 satisfies the first part of CORRELATE(T/M).

 A difficulty arises, however, when we observe IMG(T/M)'s
 action on Tns and Mns alone. First, we cannot distinguish a unique
 action on these operators under any member of the center of
 IMG(T/M), Z(IMG(T/M)) = {<T0>,<T3>,<T6>,<T9>}, or among

 Consider the following three trivially intersecting subgroups of AUT(T/M): the
 first may be generated by the automorphisms that map Tn to Tn and Mn to Mn 4 4,

 and Tn to T5n and Mn to M5n «. 0. This subgroup is isomorphic to D6. The second
 is generated by the automorphism that maps Tn to Tn and Mn to Mn + 6; it is
 isomorphic to C2. The third is generated by the automorphism that maps Tn to
 T7n and Mn to M7n 4 0; it is also isomorphic to C2. Then, any member of
 AUT(T/M) may be expressed uniquely as the product of single members from
 each of these subgroups.
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 the members of any coset of Z(IMG(T/M)).43 When we refer to
 Table A.3, we notice that u and j of <u, j, p> - which determine
 the action on Tns and Mns - are invariant for the members of
 Z(IMG(T/M)). A more difficult obstacle arises when we consider
 that the action of half the members of AUT(T/M) on Tns and Mns
 are not represented by the members of RECURSE.44 RECURSE
 contains forty-eight members, and, as every unique action on Tns
 and Mns corresponds to four members of the group, we find only
 48/4 = 12 distinct mappings of those operators; however,
 AUT(T/M) contains twenty-four members. Clearly, the second
 half of the CORRELATE(T/M) relation fails for IMG(T/M), and
 this failure is one reason why we could not find a hyper-operator
 from RECURSE that relates the tetrachordal network of Example
 5e to the others in Example 5, even though they are isographic.
 Of course, we might have ascertained the failure of

 CORRELATE(T/M) much more quickly. We could simply have
 pointed to the fact that AUT(T/M) contains no elements of order
 > 6 (Table A.4), whereas the automorphism that corresponds to T^
 for example, must be of order 12. Nonetheless, the preceding
 discussion illustrates certain differences between the T/M model

 and the more familiar and recursively convenient T/I model.
 Rather than mapping AUT(T/M) onto T/M, however, a natural
 method does exist of mapping a particular subgroup of AUT(T/M)
 into T/M,45 and this process will assist us in finding appropriate
 labels for hyper-operators. This subgroup of AUT(T/M) is the
 inner automorphism group of T/M, INN(T/M) (Table A.5).

 We recall that under <T0>, <T3>, <T6>, or <T9>, Tm maps to Tm and Mt maps
 to Ma. Similarly, if Tm maps to Tn and Mt maps to Mb under <x><T0>, for some

 <x> in AUT(TTO48), then Tm will also map to Tn and Ma to Mb under <xxT3>,
 <x><T6>, or <x><T9>. The same situation obtains from multiplication on the
 right by <x>, by virtue of Z(IMG(T/M))'s being normal in AUT(TTO4o).

 The members of AUT(TTO48) that are not in RECURSE are those <u, j, p>
 triples in which j equals 2, 6, or 10.

 "Natural" in this context is in terms of its mathematical sense: that is,
 mathematicians speak of the natural mapping of an algebraic structure to its
 quotient structures. See Dummit and Foote 1999, 84.
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 7. The Inner Automorphism Group INN(T/M)

 Before continuing our pursuit of recursive T/M structures, we
 will first examine some other aspects of inner automorphisms, as
 they have particular analytical merits that are not present in outer
 automorphisms. Klumpenhouwer states that "the case for inner
 automorphisms is (relatively speaking) more 'phenomenologically*
 regulated than is the case for outer automorphisms, in the sense
 that it conforms more closely to a requirement that methodological

 structures and procedures ought to be meaningful in some
 extended sense to musical experience (broadly construed)."46 The
 phenomenological regulation to which Klumpenhouwer refers has
 to do with the particular nature of isographies that derive from the
 inner automorphism group. Specifically, an arrow in a network
 between two pc nodes represents a transformation between those
 pcs. Now, if we wish to transform that transformation by another
 (or same) transformation, the mathematical technique for doing so
 is by conjugation. On a graph with arrows a and p, conjugation of
 a by P, ap = PaP"1, is represented by moving the arrow a by p.47
 Indeed, we can transform entire graphs in this way, providing for a
 type of isography that is less abstract than that via outer
 automorphisms.
 We give an example from the opening bassoon solo from The

 Rite of Spring (Example 13). First, we consider the {A,B,C,D} 4-
 10[0235] tetrachord from m. 2. Example 14a shows one network
 interpretation of this collection: C descends to A via the passing
 tone B (we omit the embellishing grace notes), using arrows as Tn
 operators. The D also moves to A, either through three arrows, by
 way of its being an (implied) upper neighbor to C, or directly
 through a single arrow. We have not assigned Tn labels to the

 46 Klumpenhouwer 1998, 91-92.

 Sec Examples 1 and 2 in Klumpenhouwer 1998, 84-85. The presence of P*1 in
 this product suggests one reason why transformational schemes in music theory
 often incorporate algebraic group structures: conjugation, the natural method of
 transforming one transformation a by another P, requires the inverse of p. As

 group structures provide axiomatically an inverse for every element, conjugation
 by any member of the group is possible. This property is not a feature of simpler
 algebraic systems, such as groupoids, semi-groups, monoids, and sets.
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 arrows that connect to the node D; rather, we have used Mn arrows
 for reasons that will become clear later.

 Now we will transform the operations in Example 14a by some
 member of the INN(TVM) group; for illustration, we will use
 conjugation by T7, or [T7],48 which has analytical implications that
 we will explore later. Under this conjugation, the Tn arrows of
 Example 14a remain invariant, while the Mn arrows transform to
 Mn + 8. The arrows of the graph of Example 14b show the result of
 this transformation. Moreover, the specific node content of
 Example 14b is {E,Ft,G,A}, a transposition of Example Ma's pcs by
 T7. As such, the respective transformations on nodes and arrows
 relate significantly. This correspondence is a feature of
 Klumpenhouwer's "phenomenological regulation": for any
 operation on the pcs of a network, we find a corresponding graphic
 transformation by conjugation. Example 14c shows this
 transformation on nodes and arrows for a further conjugation by
 T7.

 Returning to the passage, the bassoon continues in m. 4 with
 another C-B-A descent, now filling in the chromatic pitch Bt (m.
 4); then, it leaps down to Gt (m. 5). In addition to the referential
 C-B-A motion, the three other pitches we have now named are D,
 Bt, and Q>. Examples 15a-c present three networks, using Tn
 arrows for the C-B-A descent (as in Example 14a) and Mn arrows
 that connect to the variable fourth pc. We note that the networks
 of Examples 15a-c are strongly isographic to those of Examples
 I4a-c, respectively. Consequently, the operators of their
 underlying graphs also relate to each other through a series of
 conjugations by T7, demonstrating one way in which the passage's
 motivic growth process mirrors the T7-cycle that others authors49

 have observed in the larger growth process of the Introduction.

 Klumpenhouwer 1998 uses square brackets for hyper-operators that derive from

 conjugation (i.e., inner automorphisms).

 See Perle 1977, 10-12, Kielian-Gilbert 1982-83, 215-16, Antokoletz 1984,
 313-16, and van den Toorn 1987, 178-79 and 183-88.

This content downloaded from 128.151.124.135 on Fri, 15 Mar 2019 14:40:52 UTC
All use subject to https://about.jstor.org/terms



 M-Inclusive Networks 45

 Example 13. Opening bassoon solo from The Rite of Spring.

 © 1912, 1921 by Hawkes & Son (London) Ltd. Copyright Renewed.
 Reprinted by permission of Boosey & Hawkes, Inc.

 Example 14. Three iso graphic networks , using [T7] from INN (TIM).

 Example 15. Three isographic networks from the bassoon solo.
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 In Example 14a (and 15a), the specific pcs that represent the
 nodes of the strongly isographic networks are not the only ones that
 satisfy the transformational relationships given by the arrows. The
 K-class contains twelve networks with different node contents. We

 know from §5 that the K-class contains representative of three set-
 classes, and that for each of these set-classes, we will find four pcsets
 that relate to each other by To, T3, T6, and T9. For the K-class of
 Example 14a, these set-classes are 4-10[0235], 4-1 [0123], and Tn-
 class 4-13B[0356]. In fact, these three set-classes comprise the K-
 classes of any network conjugation of Example 14a by a Tn
 operator (e.g., Examples I4a-c and 15a are all members of 4-
 10[0235], 15b is a member of 4-l[0123], and 15c is a member of
 4-13B[0356]).50 Furthermore, we find the complete Tn-classes (for
 the asymmetric pcsets, set-classes for inversionally symmetric
 pcsets) partitioned among the three K-classes of Example 14's and
 Example 15's networks - four representatives of each in the three
 respective K-classes - allowing us to draw inner-automorphic
 isographies among any of their members.

 George Perle comments on the opening bassoon solo and its
 extension in mm. 14-15 (Example 16) in terms of implied interval
 cycles. We find certain resonance between his remarks and our

 discussion. "A forms a structural minor third with C, as a part of a
 hexachordal collection encompassing the C to B segment of the
 circle of fifths. The same A then serves as a pivotal note to the
 minor third below. The addition of another minor third at

 measure 1 5 completes one of the three partitions, C-A-FI-DK, of the
 interval-3 cycle".51 We note that this interval-3 cycle, as
 represented by Tn operators, is precisely the center of the T/M
 group.52

 The K-classes of Example 14a under conjugation by any Mn operator consist of
 representatives of scs 4-10[0235], 4-13A[01361, and 4-23f0257l.

 51 Perle 1977, 11.

 Interestingly, the piccolo clarinet line in mm. 5-6, which elides with the
 opening bassoon solo, presents a sequential fragment of an interval-2 cycle. This
 cycle, as represented by Tn operators, is the center of the T/MI group.
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 Example 16. The extension of the bassoon solo, mm. 14-15.

 © 1912, 1921 by Hawkes & Son (London) Ltd. Copyright Renewed.
 Reprinted by permission of Boosey & Hawkes, Inc.

 Example 17. Isographic networks from the opening and the extension of
 the bassoon solo.

This content downloaded from 128.151.124.135 on Fri, 15 Mar 2019 14:40:52 UTC
All use subject to https://about.jstor.org/terms



 48 Integral

 Perle continues: "Each interval is delineated in a different way,

 the C-A framing the diatonic scale degrees 3-2-1 (C-B-A), the A-Fl
 framing a segment of the interval- 1 cycle, the Ff-Dl stating the
 principal cyclic interval directly and completing a second tritone,
 A-DI. The figure that unfolds this symmetrically partitioned
 tritone is the principal motive of the 'Introduction'. "53 Specifically,
 the extension of the bassoon solo (mm. 14-15) is a varied
 transposition of mm. 4-5 down by minor third. As Perle observes,
 this transposition extends and completes an interval-3 cycle. We
 note, then, that this passage reiterates the series of T7 conjugations
 we described above, as corresponding T/M-nets whose underlying
 pcsets transpose by some member in the center of T/M - in this
 case T9 - are strongly isographic. (Compare Examples 15 and 17.)
 Examples 17b-c parallel 15b-c down a minor third. The C-B-A
 referential descent of the latter is replaced by A-Gt-FJ in the former,

 and the new variable fourth pitches are G-natural (m. 14) and Df
 (m. 15).

 8. AUT(T/M) Revisited

 As we noted at the end of §6, a natural correspondence exists
 between a group and its inner automophism group, and this
 correspondence will assist us in our pursuit of a recursive group of
 T/M-net transformations. Namely, we define a quotient group of
 T/M modulo its center, T/M / Z(T/M). This quotient group is of
 order 24/4 = 6, and, by a standard theorem of group theory,54 it is
 isomorphic to INN(T/M). Its identity element is the center of
 T/M itself, the cyclic subgroup E = {T0,T3,T6,T9}. Then, we may
 map INN (T/M) into T/M in terms of a homomorphism F, with
 conjugation by the members of E as the kernel of F. Specifically,
 under F, the image of [TJ is T8x, and the image of [MJ is M8x
 (Table A. 5).

 53 Perle 1977, 12.

 5 e.g., Scott 1987, 50 (Theorem 3.2.4).
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 These automorphisms must be of the same order as their
 images in T/M. For example, the inner automorphism induced by
 To (or equivalently by T3, T6, or T9) is of order 1. Accordingly, this

 action is the identity element of INN(T/M), and corresponds to
 To, the identity element of T/M. The two other distinct
 automorphisms that are induced by Tx operators both have order 3,
 and are inverses of each other; they correlate to T4 and T8.
 Furthermore, the three distinct automorphisms induced by Mx
 operators all have order 2. They have images in the following Mn
 operators with even indices: Mo, M4, and M8.
 Klumpenhouwer notes that the inner automorphisms [Tx] =

 [Tx «. 6] and [IJ = [Ix + 6] of the T/I group correlate to the members
 <T2x> and <I2x> of HYP(T/I), respectively.55 Similarly, we observe
 that the inner automorphism [T J = [Tx + 3] = [Tx + 6] = [Tx + 9] of the

 T/M group corresponds to <T8x> of some group HYP(T/M)
 (which we will define fully later). The same relationship holds
 precisely for the indices of the [Mx + j] and <M8x> hyper-operators,
 where j is a multiple of 3 modulo 12.

 By definition, INN (T/M) of order 6 is a normal subgroup of
 the full automorphism group AUT(T/M) of order 24. Hence, we
 may define a quotient group, AUT(T/M) / INN(T/M), of order
 24/6 = 4. Its members are the four cosets of INN (T/M), inclusive
 (Table A.6). When we adjoin the first two cosets in Table A.6, we
 form the largest subgroup of AUT(T/M) that is isomorphic to a
 subgroup of T/M. This order 12 subgroup contains the Tns and
 Mns with even indices.56 We will label it EVEN(T/M). Examples
 18a-c show three isographic T/M-nets, and Example 19 interprets
 these networks recursively as a hyper-network, using members of
 EVEN(T/M).
 The two other cosets of INN(T/M) in AUT(T/M) contain

 together the remaining twelve automorphisms. Although they do

 55 Klumpenhouwer 1998, 87-88.

 Two other order 12 subgroups exist in T/M: (1) the twelve Tn operators, and
 (2) the group that contains the Tns with even indices and the Mns with odd
 indices. Neither of these subgroups, however, is isomorphic to a subgroup of
 AUT(T/M).
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 not have images in T/M, they do in TTO48.57 When we adjoin
 these automorphisms to the previous twelve, we notice a one-to-
 one correspondence from AUT(T/M) to the order 24 subgroup of
 TTO48 with even indices, which we will label EVEN(TTO48). As a
 result, we have now been able to assign hyper-operators (albeit
 some with images outside the T/M group) to all members of
 AUT(T/M), but we are still able to model only whole- tone
 segments recursively.

 9. SPIN and Order 12 Transformations on Trichordal T/M

 Graphs

 In this section, we will confine ourselves to trichordal T/M-

 nets, partly because they are the easiest to visualize, but also because

 any larger network can be deconstructed into trichordal
 subnetworks. We will consider larger networks in the following
 section.

 The problem of limiting ourselves to the <T}> and <Mj>
 operators above is that we cannot construct hyper-networks that
 contain hyper-operators with odd indices. For example, we are not
 even able to model recursively a motive as basic as a [013] trichord.
 The reason for this failure is simply that no order 12 or 4
 automorphisms of T/M exist to correlate to the TTOs of order 12
 (Tj, T5, T7, and Tn) and order 4 (T3 and T9, and all Mns where n is
 odd). Therefore, we must look elsewhere for a fully recursive
 system - one that does not have automorphisms as its basis, and
 that consequently does not describe isography in the sense of
 Lewin. We define here a recursive system that uses the mappings
 of EVEN(T/M) as its point of departure, but describes the
 remaining transformations merely on graphs, and not in terms of
 automorphisms of the T/M group.

 Such graphic transformations are reminiscent of Stoeker's
 "axial isographies" among T/I K-nets, which do not derive from

 This situation recalls AUT(T/I)'s containing twenty-four members outside
 HYP(T/I) with images in TTO4g as Mns and MIns.
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 Example 18. Isographic T/M-nets.

 Example 19. Recursive hyper-network of Examples 18a-c.

 Example 20. (a) Well-formed and (b) ill-formed T/M graphs.

 Example 21. Order 12 graphic transformations on trichordal TIM
 graphs.
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 automorphisms of the T/I group.58 In trichordal axial isography,
 one In arrow remains invariant, while the remaining In and Tn
 arrows vary. These transformations are generally not true graph
 isomorphisms, particularly when a Tn operator maps to another of
 a different order (e.g., when T3 maps to T4). In making the
 transition from the group-theoretical to the graph-theoretical
 model, we lose the following properties of groups as axioms: closure

 under the group operation, associativity, presence of an identity,
 and presence of an inverse for each operation (arrow). We may
 nevertheless define graphic systems that have some or all of these
 properties. For instance, Stoecker's axial isographies are in fact
 closed under composition, they are associative, and they contain an
 identity and inverse elements. We also gain some freedom: we are
 no longer restricted by the limitations of group structures and their
 symmetries. Indeed, in pursuing recursion, these structures and
 symmetries are not necessarily the only bases on which higher-level

 interpretive acts may take place.
 To describe a trichordal network transformation of order 12 to

 correlate to <T!>, we need to divide <T2> by two; but when we
 substitute 1 (or any other odd number) for j in <Tj>, and apply this
 hyper-operator to a well-formed graph, the resulting graph is not
 well-formed. For instance, Example 20a is well-formed, but
 Example 20b, which performs +1 on both the indices of Example
 20a's Mn operators, is not. Whereas M3M2 = T,, M4M3 ^ Tj.
 Nonetheless, we may express any even integer j modulo 12 as 2k in
 precisely two ways: k = j/2, and k = (j/2) + 6. In other words, as 2
 is the sum of either 1 + 1 or 7 + 7 modulo 12, we may define a
 transformation on the graphs of trichordal networks that sends the

 index of the operator of one Mn arrow by + 1 , and the other by +7
 (while keeping the index of the Tn arrow invariant). Such a
 transformation is of order 12, and performed twice obtains <T2>.
 Moreover, it also yields a well-formed graph. It is important to
 note, however, that this transformation does not derive from an

 automorphism of T/M, particularly as Mn is always of a different
 order from Mn + x and Mn + 7.

 "° Stoecker 2002.
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 In this manner, any trichordal T/M-net with arrows Ma and
 Mb (Example 21a) may transform in two different ways: either Ma
 goes to Ma + j and Mb goes to Mb + 7, or Ma goes to Ma + 7 and Mb
 goes to Mb + ! (Examples 21b-c). To be consistent in our analyses,
 first we need to be consistent in the way in which we conceive of
 the graphs - meaning here the directions of their arrows - and then
 we need to define which of these two transformations will represent

 <!*!>. (The other will represent <T7>). Changing the direction of
 a graph's arrows, while preserving their respective associations as Tn

 or Mn types, does not affect the overall GIS interval content of any
 corresponding network (see n. 13). Therefore, we may write our
 graphs with the arrows pointing in whatever directions we require
 to project our interpretation of the pcs, networks, and so on, that
 we associate with its nodes. Nevertheless, when we perform a <T^
 transformation on a trichordal T/M-net, we will conceive of its

 graph as being ordered clockwise - that is, all arrows point
 clockwise.59 We will call this conception the SPIN of the graph.
 Then, for consistency, we will always increment the index of the
 operator of the Mn arrow that follows the Tn arrow (clockwise) by
 + 1, and that of the other by +7 (Example 21b). Later, we can
 readjust the arrow directions to suit our interpretation.

 This <T,> performed twice yields <T2> as we defined above,
 since Ma + x «. x = Ma + 2, and Mb + 7 + 7 = Mb + 2- <Tj> reiterated three

 times sends the index of the first Mn arrow ton+1 + 1 + 1 (or n +

 3), and that of the other to n + 7 + 7 + 7 (or n + 9), resulting in
 <T3>. <T^ performed four times equals <T4> as defined above,
 and so forth. Furthermore, <T^ and its powers may be multiplied
 to <M0> above, thereby generating a group of twenty-four
 trichordal graphic transformations that is indeed isomorphic to
 T/M itself.60 We will call this group HYP(T/M). Thus, we have
 finally defined a fully recursive system for relating trichordal T/M-
 nets.

 Now we may model a [013] trichord recursively. Example 22a
 returns to the C-B-A referential descent from the The Rite of Spring.

 We take the melodically salient C-B to be the interval we represent

 For now, we will even conceive of involutions as directed intervals, moving
 clockwise.

 We recall that the T/M group is generable from T, and Mo.
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 with a Tn arrow, Tn. Then, we give B-A and C-A as M2 and M9,
 respectively (Example 23a). The first harmonic interval of the
 piece occurs in m. 2. The horn Cl anticipates, then sounds against,
 the C-natural of the bassoon solo, thereby creating a dissonant
 major seventh and a major-minor clash with the A to which the C
 descends (Example 22b). We represent these intervals as follows:
 Cl-C as Tn, and C-A and CJ-A as M9 and M4, respectively
 (Example 23b). Finally, the horn D anticipates and supports an A-
 D-G melodic figure (Example 22c). We represent the D-A interval
 (which occurs both melodically and harmonically) as T7, and the A-
 G and D-G intervals as M10 and M9, respectively (Example 23c).
 All three networks relate to each other in significant ways. We

 interpret each to contain one interval, either Tn or T7, which
 generates a cycle of order 12, and two additional intervals of orders
 2 and 4 (Ma and Mb, where a is even and b is odd). Within each

 network, each interval is equivalent to the product of the other
 two - hence they are well-formed - and these products correspond
 among the three. Even though these relationships are not
 isographies in a traditional K-net theoretical sense, they have many

 of the same properties, and we can view them as hyper-operators.
 For example, our interpretation suggests that the Tu-related

 dyad C-B in Example 22a ascends (in pc space) to Cf-C in Example
 22b, while the Mn-related A remains fixed. This action generates
 an order 12 cycle, and conforms to our notion of <T7> in
 HYP(T/M).61 Similarly, the Tu-related C-B semitone expands to a
 T7-related D-A fourth at its climax (Example 22c), while the earlier
 B-A (M2) approach to A from above rotates to G-A (M10) from
 below. This transformation is an involution, and it conforms to

 <M0>. Furthermore, Example 23b relates to Example 23c by
 <M!>, which is a product of these previous two hyper-operators,
 <M0xT7>'1 = <M!>. Accordingly, we may construct a hyper-
 network (Example 24), which demonstrates the same structural
 properties as each of the pc networks. Example 24 relates these
 trichords recursively via HYP(T/M), even where we cannot

 To see the <T7>, we must SPIN the trichordal networks clockwise. We have

 reoriented the arrows in the graphs in Example 24 to reflect our interpretation of
 the trichords.
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 Example 22. Three trichords in m. 2.

 © 1912, 1921 by Hawkes & Son (London) Ltd. Copyright Renewed.
 Reprinted by permission of Boosey& Hawkes, Inc.

 Example 23. Isographic trichordal networks from Example 22.

 Example 24. Recursive hyper-network of Examples 23a-c.
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 do so in terms of AUT(TVM). In particular, we note the hyper-
 operators with odd indices.

 10. HYP(T/M) Applied to Tetrachordal and Larger Networks

 In the previous section, we alluded to the fact that larger
 networks may be deconstructed into trichordal subnetworks. The
 implication was that we might apply the operators of HYP(TVM) to
 these subnetworks, and thereby transform the larger networks.
 Even though this assumption is mostly true, certain difficulties
 arise; consequently, a full generalization of this process is outside
 the scope of this study. However, we will suggest one way in which
 we might apply this method to tetrachordal networks, and then
 address briefly still larger networks.

 The graph of any tetrachordal network contains six arrows
 (although some may be merely implied).62 We may model it
 accordingly as a tetrahedron. We find two classes of well-formed
 T/M tetrachordal graphs. First are those graphs that contain three
 Tn operators and three Mn operators. In any such tetrahedral
 graph, one face represents an L-net, and the other three faces
 represent trichordal T/M-nets. We will call this set of graphs Class
 1. Second, we find examples that contain two Tn operators and
 four Mn operators. In these tetrahedral graphs, all four faces
 represent trichordal T/M-nets. These graphs will comprise Class 2.
 In applying some member, either <Tn> or <Mn>, of

 HYP(T/M) to any such network, it would be most efficient to
 apply it consistently to all faces of the tetrahedron, if possible.
 Given an appropriate SPIN, this scheme can be made to work for
 Class 1 graphs, thereby obtaining well-formed tetrachordal
 networks. However, it does not work for Class 2. Here we must

 apply <Tn> to two faces, but then <T7n> to the other two (similarly,
 we must apply <Mn> and <M7n> to two faces each). While this
 situation is not problematic for hyper-operators with even indices,
 which map onto themselves under modulo 12 multiplication by 7,

 A network with n nodes will always have precisely 1 + 2 + ... + (n - 1) arrows,
 just as the interval-class vector for a pcset of cardinality n accounts for 1 + 2 + ... +
 (n - 1) intervals.
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 it is a hindrance for hyper-operators with odd indices. Namely,
 how do we decide to which faces we apply the desired hyper-
 operator? We may overcome this obstacle by conceiving our graphs
 in a particular way, then performing the hyper-operation.

 For this purpose, we will depict our tetrachordal T/M-nets as
 quadrangles, rather than as tetrahedra. When so configured,
 network analysts show typically the four outer arrows, and not the

 two internal composite arrows, as they are implicit from the outer
 arrows. In Class 1 graphs, we will position two of the Tn arrows
 along the top and left edges; in Class 2 graphs, we will give all outer
 edges as Mn arrows (Example 25). Again, for consistency, we will
 define a particular SPIN for our graphs. This orientation of arrow
 directions may or may not conform to our interpretation of a
 network's underlying pcset, but it will allow us to perform a
 transformation on its graph. We may reorient the arrows at a later

 stage. We will approach the two classes of tetrachordal graphs in
 turn.

 First, we consider those tetrachordal networks represented by
 the graph of Example 25a (Class 1). We require a consistent set of
 arrow directions to determine the graph's SPIN.63 Therefore, we
 will always orient the Tn arrow across the top of the graph left to
 right, the Mn arrow on the right edge downward, and the (hidden)

 arrow of the composition of these two arrows upward to the left.
 (See the right subgraph in Example 26.) In other words, the SPIN
 of this trichordal subgraph is clockwise. The SPIN of the other,
 adjacent trichordal subgraph is, then, counter-clockwise, and its
 arrows point in that direction (the left subgraph in Example 26).64
 Now we transform each trichordal subnetwork according to the
 procedure for <Tn> or <Mn> above (Example 27 shows this
 procedure for <Tj>). Then we reassemble the tetrachordal graph
 (Example 28), and we may reorient the arrow directions to fit our
 interpretation of the music.

 Again, when the order of an arrow's operator is 2 - and hence is a double
 arrow - we will conceive of it in terms of the following directions to determine
 SPIN.

 Such a scheme maximizes the energy of the SPIN according to the one-
 dimensional Ising model of physics. Douthett and Krantz 1996 discuss the Ising
 model in terms of maximally even collections.
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 Example 25- The two classes of tetrachordal TIM graphs.

 Example 26. Two trichordal subgraphs within a tetrachordal graph
 (Class 1).

 Example 27. Trichordal subgraphs under <Tl> (Class 1).
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 Example 28. Reassembled tetrachordal graph (Class 1).

 Example 29. Two trichordal subgraphs within a tetrachordal graph
 (Class 2).

 Example 30. Reassembled graph (Class 2).
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 Second, we consider networks in Class 2 (Example 25b). The
 two Tn arrows in their graphs are the composite internal arrows.
 We will divide these networks into trichordal subgraphs, orient
 them, and determine their SPIN, as follows. The top Mn arrow
 will always point left to right. The rightmost Mn arrow will always
 point downward, and their composite Tn arrow will always point
 diagonally upward to the left. Therefore, the SPIN of this
 trichordal subgraph is clockwise. As with the previous class of
 tetrachordal networks, the SPIN of the other trichordal subgraph is

 counterclockwise (Example 29). To effect a <Tj> transformation
 to the overall graph, we perform <Tj> on each respective trichordal

 subgraph, then reassemble (Example 30) and reorient the arrow
 directions to demonstrate best our interpretation.

 The procedures we outline here may extend to pentachordal
 and other larger networks, as any such network can be
 deconstructed into trichordal subgraphs. Moreover, each of these
 subgraphs, given an appropriate SPIN, can transform by some
 member of HYP(T/M) and reassemble to create a new network

 that is well-formed. In such a procedure, it is important to define
 carefully the specific orientations of the graph's arrows that we will
 use in the SPIN, and to use those orientations consistently,
 especially in implementing hyper-operators with odd indices.
 Then, reorientation of the networks may reflect our interpretation
 of their underlying pcsets. Nevertheless, we recall that the system
 we propose here for tetrachordal and larger networks is not a full
 generalization, and leaves several questions unaddressed.

 11. Conclusions

 The foregoing musical and mathematical analysis has proposed
 a fully recursive system for using T- and M-inclusive K-nets.
 Because no (sub)group of automorphisms of the T/M group is
 isomorphic to T/M itself, we have had to define a group of
 transformations on graphs that is isomorphic to T/M. This group
 allowed us to model pitch-class networks recursively as networks-
 of-networks, and so on. In doing so, we gave initially a graphic
 transformation on trichordal networks. Then we observed how we

 may deconstruct larger networks into trichordal subnetworks,
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 which, under these graphic transformations, may be reassembled to

 produce a transformation on the larger network. However, we left
 the full generalization of this process for future work.

 We observe now some potential modifications and extensions
 to the theory. The particular system we used to deconstruct larger
 networks into trichordal ones is not the only method for doing so,
 nor are the specific orientations we gave as the SPIN of these
 graphs the only ones available. Nonetheless, the deconstructions
 and SPINs that we have defined do, in fact, result in well-formed

 networks under the members of the group of graphic
 transformations. Though we may describe other related systems,
 they would also have to result in well-formed networks.

 We have concentrated primarily on the T/M group. As we
 suggested earlier, similar systems can be described for the T/MI
 group, as well as for other groups of operations.65 The T/M and
 T/MI groups (alone, but not together) are particularly salient in the
 analysis of music that involves exchanges of chromatic and circle-
 of-fifths spaces, but that does not incorporate inversion structurally.
 We have pointed out that the primary distinction between the use
 of T/M and T/MI-nets is that the former system contains a larger
 variety of set-classes in its various K-classes, while the latter
 describes a greater number of strong isographies among fewer set-
 classes.

 We have drawn our musical examples from the Introduction to
 Stravinsky's The Rite of Springy as it provides an excellent
 illustration of a piece of music that fits the above criteria for
 network analysis with the T/M group. One might even undertake
 a more substantial analysis of the Introduction, or of the entire
 ballet, using this method. In fact, a large body of twentieth-century
 music lends itself well to analysis with T/M-nets, such as certain
 works by Debussy, Bartok, Lutoslawski, and Crumb, among
 others, in which diatonic and chromatic materials coexist.

 For example, Gollin 1998 describes a recursive system of isography with the
 Q/X group. We could explore various Q/M hybrids, some of which have
 quaternion and quaternion-like algebraic structures, or other groups that involve
 M and MI operators, as well.
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 Glossary

 automorphism. An isomorphism of a group to itself.

 automorphism group. The set of all automorphisms of a group. Automorphism
 groups themselves have group structures.

 center. The normal subgroup of elements within a group that commute with all
 elements in the group.

 conjugation of a by b (elementwise). The composition bab '.

 conjugation of G by b (groupwise). The set of elementwise conjugations {bgb1 |
 for all gin G}.

 coset. The set of products of a subgroup's elements and a group element,
 multiplied consistently on the left or the right.

 cyclic group of order n (Cn). The group of rotational symmetries for a regular n-

 gon.

 dihedral group of order n (DJ. The group of symmetries (rotations and
 reflections) for a regular n/2-gon. (N.B.: Some sources, including Dummit and
 Foote (1999), give the dihedral group of order n as Dn/2.)

 direct product. The set of all products among respective members of a family of
 sets. The direct product of two or more groups is itself a group.

 homomorphism. A function F that maps a group G to another H, such that
 F(g)F(h) = F(gh), for all g and h in G.

 inner automorphism. An automorphism that obtains via groupwise conjugation.

 inner automorphism group. The set of all inner automorphisms of a group. Inner

 automorphism groups themselves have group structures.

 involution. A group element of order 2.

 isomorphism. A homomorphism that is one-to-one and onto.

 kernel. In an homomorphism F : G - > H, the set of elements in G that map to the

 identity element of H.

 order. The least power of a group element that obtains the identity element.

 outer automorphism. Any automorphism that does not obtain via group
 conjugation.

 normal subgroup. A subgroup N of G, such that gN = Ng, for all g in G.

 quotient group. A quotient (or factor) group G/N is a group structure on the
 cosets of a normal subgroup N in G. The group operation is (Nx)(Ny) = N(xy),
 for any x and y in G. (As N is normal, it does not matter whether we consider left

 or right cosets.)
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 APPENDIX: TABLES

 A.l. The forty-eight TTOs in cyclic notation.

 Label Cycle(s) on pcs
 Tn (0)(l)(2)(3)(4)(5)(6)(7)(8)(9)(10)(l 1)

 T, (0,1,2,3,4,5,6,7,8,9,10,11)

 T2 (0,2,4,6,8,10)(l,3,5,7,9,ll)

 T, (0,3, 6, 9)0,4,7, 10X2,5,8, 11)

 T4 (0,4,8X1,5,9X2,6,10X3,7,11)

 T, (0,5,10,3,8,1,6,11,4,9,2,7)

 T. (0,6X1,7X2,8X3,9X4,10X5,11)

 T7 (0,7,2,9,4,11,6,1,8,3,10,5)

 Tg (0,8, 4) (1,9, 5X2, 10,6X3,11,7)

 T9 (0,9,6,3X1, 10,7, 4)(2, 11,8,5)

 T,o (0,10,8,6,4,2)0,11,9,7,5,3)

 T,, (0,11,10,9,8,7,6,5,4,3,2,1)

 Mq (0)0,5X2, 10X3)(4,8)(6)(7, 11)

 M, (0, 1,6,7X2, 11,8, 5X3, 4, 9, 10)

 M2 (0,2)0,7X3,5X4, 10X6,8X9, 11)

 M, (0,3,6,9)0,8,7,2X4,11,10,5)

 M4 (0, 4)Q, 9X2X3, 7X5X6, 10)(8)(l 1)

 M, (0,5,6,11)0,10,7,4X2,3,8,9)

 M6 (0, 6)0, 1 1)(2, 4)(3, 9X5, 7)(8, 10)

 M7 (0,7,6,1X2,5,8,11X3,10,9,4)

 Mg (0, 8)p)(2, 6)(3, 1 1X4X5, 9)(7)(10)

 M, (0,9,6,3X1,2,7,8X4,5,10,11)

 M,q (0, 10)(l, 3X2, 8)(4, 6)(5, 1 1)(7, 9)

 M,, (0,11,6,5)0,4,7,10X2,9,8,3)

 MIp (0)(l, 7)(2)(3, 9)(4)(5, 1 D(6)(8)(10)

 MI, (0,1,8,9,4,5X2,3,10,11,6,7)

 MI, (0,2,4,6,8, 10)(l, 9, 5)(3, 11,7)

 MI, (0, 3)0, 10X2, 5X4, 7)(6, 9)(8, 1 1)

 MI4 (0,4,8X1, 11, 9,7,5, 3)(2, 6, 10)

 MI, (0,5,4,9,8,1X2,7,6,11,10,3)

 MI, (0, 6)0X2, 8X3X4,10X5X7X9)0 D
 MI7 1 (0,7,8,3,4,11)0,2,9,10,5,6)
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 MI, I (0,8,4X1,3,5,7,9, 10(2,10,6)
 MI, (0, 9)0, 4)(2, 1 1)(3, 6)(5, 8)(7, 10)

 MI,, (0,10, 8, 6, 4, 2)0,5,9)0, 7, 11)

 MI,, (0,11,4,3,8,7)0,6,5,10,9,2)

 In (0)(l, 11)(2, 10)Q, 9X4, 8)(5, 7)(6)
 I, (0,l)(2, 11)(3, 10)(4,9)(5,8)(6,7)
 I, (0,2X0(3,10(4,10X5,9X6,8X7)
 I, (0,3)0,2X4, 11)(5, 10X6,9X7,8)
 I. (0, 4)(1, 3)(2)(5, 10(6, 10X7,9X8)
 I, (0,5)(l,4)(2,3)(6, 11)(7, 10X8,9)
 h (0,6)(l,5)(2,4)p)(7, 10(8, 10)(9)
 I7 (0, 7)0, 6)(2, 5X3, 4)(8, 11X9, 10)
 I. (0,8)0, 7)(2, 6X3, 5X4X9,11)00)
 I9 (0,9)0, 8)(2,7)(3, 6)(4,5)(10, 11)
 I,o (0,10)0, 9X2, 8)(3, 7X4, 6X5)00
 I,, | (0,1 1)0, 10X2, 9)0, 8)(4, 7)(5, 6)

 A.2. The rules of combination forTn, Mn, MIn, and In operators.

 TmTn * T_ I MmTn = Mm.Sn I MImTn - MIm,7n 1 ImTn * Im.lln

 TmMn = MM MmMn = Tm.Sn MImMn = Im,7n ImMn = ML.,,,

 TmMIn - ML MmMIn = Im,Sn MImMIn - Tm,7n ImMIn = M-n.
 TmIn = Im,n | MmIn « MIm,Sn 1 MImIn = Mm,7n 1 ImIn = Tm4il,

 A.3. The members of RECURSE.

 <u, j, p> Action on TTO48 Hyper-operator

 <l>0,0> Tn ^ Tn, Mn -» Mn,0> MIn -> MIn,o, In -» In40,0

 <1,4,9> Tn -> Tn> Mn -» Mn,4> MIn -> MIn.9> In -» In^9

 <1,8>6> Tn-»Tn,Mn~»Mn>8tMIn->MIn,6>In-»In.g.6

 <l,0>3> Tn -> Tn> Mn -> Mn.0> MIn -» MIn43, In -» I..O43

 <l,4>0> Tn ^ Tn> Mn -» M.44> MIH -» MIn>Ot In -+ 1.,440

 <1,8,9> Tn-»Tn>Mn->Mn,g>MIn-»MIn49,In-»In4g,9

 <l>0,6> Tn->Tn,Mtl^Mn40>MIn-^MIn>6>In-»In>0,6

 <1,4,3> 1 Tn^TntMn^Mtt44,MIn-»MIn.3,In^In.4,3 <T7>
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 <l,8,0> Tn -> T., Mn -> M.4l. MIn -> MIn.o, I. -> I..,»o

 <l>0,9> Tn -> Tn> Mn -> Mn>0, MIn -» MIn.9> In -> ln.0.9

 <1,4,6> Tn -» Tn, Mn -> Mn,4, MIn -> MI.46t In -> In.4>6

 <1,8,3> Tn -» Tn> Mn -»Mnt8, MIn -> MIn.3> In -» In,go

 <5,0>0> Tn -> T5nt Mn -> M5n,0, MIn -> MISn,0> In -> ISn.o.o

 <5,4,9> Tn -> T,nt Mn -> M5n 4 4, MIn -» MISn 4 9, In -> I5n 4 4 4 9

 <5,8,6> Tn -» T5n> Mn -> M5n 4 8> MIn -» MI5n 4 6t In -» I5n 4 g , 6

 <5,O,3> Tn -> T5n> Mn -> MSn 4 o> MIn -> MI5n 4 3, In -> I5n 4 o 4 3

 <5,4,0> Tn -> T5n, Mn -> M5n . 4, MIn -> MI5n 4 0> In -> ISn 4 4 4 0 <M4>

 <5,8,9> Tn ~» T5n> Mn -> M5n . g> MIn -+ MISn , 9> In -+ I5n . g . 9

 <5,0,6> Tn -> T5n, Mn -» M5n „ o, MIn -» MI5n 1 6> In -^ I5n . 0 . 6

 <5,4,3> Tn -» T5n> Mn -> M5n , 4> MIn -> MI5n . 3> In -> I5n . 4 , 3

 <5,8,O> Tn -+ T5n, Mn -^ M5n . gt MIn -» MI,n . 0> In ^ I5n , g , 0

 <5,O,9> Tn -» T5n, Mn -> M5n . o, MIn -» MI5n » 9, 1, -> I5n » 0 + 9

 <5,4,6> Tn -» T5n> Mn -^ M5n.4> MIn -^ MI5n>6> In -» ISn.4.6 <M10>

 <5,8>3> Tn^T,ntMn-^M5n.gtMIn->MI5n.3tIn-»ISn,g.3 <Mn>

 <7,0,0> Tn -» T7n> Mn -^ M7n . 0> MIn -* MI7n . 0> In ^ I7n . 0 . 0 <MI0>

 <7,4,9> Tn -» T7n> Mn -^ M7n 4 4> MIn -+ MI7n . 9> In -> I7n . 4 , 9

 <7,8,6> Tn -> T7n> Mn -> M7n . g> MI. -> MI7n . 6, In -> I7n . . 4 6 <MI2>

 <7,0,3> Tn -» T7n> Mn -+ M7n , 0> MI. -> MI7n , 3> In ^ I7n , 0 . 3 <MI3>

 <7,4>0> TB -^ T7n, Mn -» M7n . 4> MI. -> MI7n . 0> In -» I7n . 4 . 0 <MI4>

 <7,8,9> Tn -> T7n> Mn -^ M7n . „ MIn -> MI7n . „ I. -» I7. . , . 9 <MI5>

 <7,0,6> Tn -» T7n> Mn -^ M7n . o, MIn -» MI7n , 6t In ~» I7n . 0 4 6 <MI6>

 <7,4,3> Tn -^ T7n, Mn -> M7n , 4> MIn -» MI7n , 3> In -» I7n , 4 . 3 <MI7>

 <7,8,0> Tn -» T7n, Mn -» M7n 4 g> MI. -> MI7n . 0> In -» I7n 4 , , 0 <MIg>

 <7t0,9> Tn -> T7nt Mn -» M7n , 0> MI. -> MI7n 4 9> In -> I7. 4 0 4 9 <MI9>

 <7,4,6> TH -^ T7n, Mn -» M7n 4 4> MIn -^ MI7n 4 6, In -> I7n 4 4 4 6 <MI,0>

 <7,8,3> Tn -» T7nt Mn -» M7n 4 g, MIn -^ MI7n 4 3, In -> I7n 4 g 4 3

 <ll>0>0> T.-»Tii.,M.-»M,,.4,,MI.-»MI11.4,>I.-»Ill.4O4, <Io>

 <1 1,4,9> Tn -^ Tllw, Mn -^ M,lH44> MIn ^ MI,ln49> I. -» In.444> <!,>

 <1 1,8,6> Tn -^ T,ln, Mn -^ M1|M|, MIn -> MIllB46t In -> I,ln.g.6 <I2>

 <1 1,0>3> Tn -> T,ln, Mn -+ Mn.,0, MIn -> MIilB43t !„ -» Illn,o,3 <I3>

 <1 1,4,0> Tn -» Tlln> Mn -» Mn.44> MIn -* Mln.,0, In -> In.^.o <!<>

 <1 1,8,9> Tn -> Tlln> Mn -» Mn.4t> MIn -> MIlln>9> In -» I,,B4,49 <I5>

 <ll>0,6> T.-»TII.>M.-»MII.4O>MI.-»MIII.46>I.-»I,I.4,46 <I6>

 <ll,4t3> T.->Tn.,M.->M,l.44,MI.-»MI1,.43tI.-»Il,.4443 <I7>

 "^8t0> 1 T.-»T,,.,M.-»MII.4,>MI.-»MI,1.4,,I.^II,.4,4O [ <I8>
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 <1 1,0,9> Tn -» Tnn> Mn -> Mnn.o, MIn -> Mllln,9, In -> \Un.*.9 <I9>

 <1 lt4,6> Tn -> T,,., Mn -> Mlln,4, MIn -» MI,ln.6> I. -> I,ln.4,6 <I10>

 <11,8,3> Tn -» T,,n> Mn -> Mlln.8> MIn -> MIlln>3, In -> Inn.g,3 <In>

 A.4. The members of AUT(T/M).

 Action on T/M Hyper-operator Order

 Tn->Tn,Mn->Mn,0

 Tn->Tn,Mn->Mn,2

 Tn->Tn,Mn->Mn,4

 TH-»TB,Mn-»Mw.6

 Tn-^TntMn-»Mn,g

 Tn -» Tn> Mn -» Mn . 10

 Tn->TSn,Mn->MSn,0

 Tn->TSn>Mn->MStw2

 Tn~»TSn,Mn-»MSn44

 Tn-^TSn,Mn^MSn4fi

 Tn^TSn>Mn->MSn,g

 Tn-^TSn>Mn~»MSn,,n

 Tn-»T7n>Mn->M7n,0

 Tn-^T7n,Mn-»M7n42

 Tn-»T7n,Mn->M7n,4

 Tn^T7n,Mn->M7n,fi

 Tn->T7n>Mn->M7n,a <MIg>

 Tn->T7n>Mn->M7n,10

 Tn->Tlln,Mn->Mlln,0

 T,->TllB>Mll-»Mi,n.2

 Tn-»Tlln,Mn^MllnW

 tn-»Tlln>Mn->MllB,6

 Tn->Tlln>Mn->Mlln,g

 Tn -» T,,n, Mn -» M,ln 4 ,0
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 M-Indusive Networks 69

 A.5. The members of INN(T/M).

 Conjugation Action Order Image in T/M

 [Tn] - [TQ . [T.] . [T,] T.-»T.,M.-»M... 1 Tn

 rrj ■ [TJ ■ [TJ ■ [T,,] T.-»T..M.->M..,« 3 T,

 [T,] - 1TJ - 1T7] - [T,J T.-»TtfM.->M... 3 T,

 [MJ - [MJ - [MJ - [MJ T.->TWM.->M^.. 2 M.

 [MJ - IMJ - [MJ - [M,,l T.-»TwM.-»Mfc.4 2 M,

 [M,] = [MJ = [M7] = [M, J I T. -» Tw Mn -» MSn . . | 2 | M.

 A.6. The cosets of x(INN(T/M)) = (Inn(T/M))x, for all x in
 AUT(T/M).

 Action Order Hyper-operator

 Tn->Tn,Mn->Mnt0

 T,->Tn,Mn->MB.4

 Tn^Tn,Mn^MntR

 Tn -> T,n, Mn -» M,n t o

 Tn^T,n,Mn-^MSn>4

 Tn->T,n,Mn^M,ntS 12 |<M»>

 Action Order Hyper-operator
 Tn^Tn,Mn-^Mn.,

 Tn->Tn,M,-»M,^

 Tn -» Tn, Mn -» Mn . io

 Tn -» TSn, Mn -» M.n ^

 Tn -> T<n> Mn -> M,n .6

 Tn -» TSn, Mn -> M,n . m

 Action Order Hyper-operator

 Tn->T7n,Mn->M7n,n

 Tn-»T7n,Mn-»M7nj4

 TM->T7,,M,-»M7n..

 Tn- >Tnn> Mn- »Mnn .„

 Tn - » T[ln, Mn -> M,in .4

 Tn -» Tnn, Mn -» MMn ^ 8
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 70 Integral

 Action Order Hyper-operator

 T.-»T7M,M,->M7n^

 Tn->T7B>M,-»M7n^

 Tn->T7n,Mn->M7n.,n 6 <MI,n>

 Tn -» Tnn, Mn -» M, )n . 2

 Tn-»Tnn>Mn-»M,,nt(;

 Tn-»Tnn, Mn->Mnn»io I 2
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