
 Composition with Pitch-Classes

 by Robert D. Morris

 Reviewed by Michael Cherlin

 While there is no single, tight knit community of scholars

 and composers that fills the serious side of our musical lives at this

 end of the twentieth century, the closest we come to such a

 community, the closest we come to a tradition that sustains,

 stimulates and anneals creative thought in and about music, is

 through that body of theory and composition to which Morris makes

 the present contribution. Composition with Pitch-Classes in part

 forms a compendious integration of work done in the theory of

 atonal and twelve-tone music over the past thirty years. As such, the

 book may be read and used as a long-needed reference work, a

 virtual encyclopedia of atonal and twelve-tone theory. In this

 respect, Composition with Pitch-Classes complements the valuable

 resource in John Rahn's Basic Atonal Theory. While Rahn

 introduces students to a central core of ideas, Morris's book

 addresses advanced composers and scholars. (Even though Morris

 carefully defines his terms as they occur, it is difficult to imagine a

 reader who might negotiate the book without serious, long-term

 preparation.)

 To be sure, Schenkerian and Post-Schenkerian studies have also created a family

 of scholars and composers who can talk to and listen to one another. But the

 Schenkerian and Post-Schenkerian tradition has not, and most likely cannot,

 generate the basis of an evolving language for musical composition.
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 But to characterize Composition with Pitch-Classes as a

 reference work, or even as the integration of an extensive body of

 theory, which is to say much more, would still miss the mark. Like

 Rahn, Morris has a specific, though far-reaching pedagogical

 program that structures his text. The goal of that program is stated

 partially within the title of the book: to learn to manipulate pitch-

 class sets and segments toward compositional ends. However, as

 television commercials tell us of other products, here there is much,

 much more. At a time when rigorous thought seems to be out of

 style in many circles of composers, Morris's book may serve as a

 reminder that fantasy and technique are not strangers to one

 another. Studying Composition with Pitch-Classes is a challenging

 and exhilarating enterprise. The book is a contribution of the first

 rank to the pedagogy of music composition.

 In the first few pages of the text, Morris states his objective:

 to generate a comprehensive and therefore flexible theory of

 compositional design, neither prescriptive nor descriptive in the

 traditional sense of those terms. His argument is summarized nicely

 on page 3.

 Accordingly, a compositional theory for something larger
 than a small segment of today's music needs to be explicit
 and general at once, since, although it may be designed to
 help generate a certain species of music based on models of
 preexisting contemporary music, it must not specify, in any
 but a rather tentative manner, the stylistic component of the
 music. Thus, this kind of theory may initially seem to be
 speculative because it does not lead immediately to the
 solution of specific compositional problems. In fact, such a
 theory emphasizes the mutuality between doing composition
 and thinking about it-each activity provides problems and
 solutions to the other. Furthermore, such a theory cannot
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 be reductive in the sense that if certain variables specified
 by the theory have been defined, a piece of music will
 emerge. This is not to say that such strictly generative
 theories may not be useful or attractive- some have used
 them to make actual music, but that they are useful only to
 the composer who creates the theory to generate a certain
 (presumably original and unique) class of pieces. What is
 needed is a theory at a higher level of generalization which
 permits theories of the specific and reductive kind to be
 invented. Thus a general theory is not equivalent to a
 manual or cookbook. Rather, a theory of compositional
 design that can satisfy structural requirements arising from
 different functions, uses, and aesthetics of music consists of
 a set of tools and methods for constructing and interpreting
 compositional plans.

 The validity of Morris's observation about Hthe mutuality

 between doing composition and thinking about it," depends upon

 how well the composer has integrated thought 'about music' with

 thought 'in music' The groundwork for such integration is at the

 core of Composition with Pitch-Classes.

 Large-Scale Plan of the Text

 The book comprises seven principal chapters. The first

 chapter introduces the topic of compositional designs, abstract, two-

 dimensional compositions of pitch-classes (or time-point classes),

 and succinctly considers various options for their realization. The

 chapter is proleptic in nature, anticipating the book's final goal and

 placing the chapters that follow into a perspective that shows where

 they are leading. Thus, the opening topic foreshadows its own in-

 depth treatment, which is basic to the central argument of the text.
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 Chapters 2 through 5 lay the groundwork for generating

 compositional designs through an extensive study of the concepts of

 musical space, musical functions and musical objects that will

 generate and fill those designs. Chapter 6, in many ways the

 centerpiece of the book, integrates the functions and objects studied

 in Chapters 2 through 5 to generate eight compositional designs.

 After each design is presented and analyzed in its specificity, a more

 general approach is suggested toward composing the types of

 structures and functions within the design. This entails a creative

 integration of all that has preceded. Chapter 7 deals principally with

 the problems of transforming pc-space into pitch-space and with the

 correlation of temporal and pitch dimensions.

 Morris lays the groundwork for considering objects and

 functions by first defining different types of musical space. The

 dimension of pitch space is divided into three primary types,

 exhausting relative space, linear (measured) space and cyclic space.

 Each type of space may be either ordered or unordered. Only

 relative differences among pitches obtain in contour space (c-space).

 Thus, every pitch x is higher than, lower than or equal to every pitch

 y. Unordered c-space does not comprise actual contours, which

 require ordering every x before or after every y, but is rather a more

 abstract source for generating contour, just as unordered sets of

 pitches are an abstract source for generating ordered pitch

 segments. Measured or linear space includes two species. Intervals

 in pitch space (p-space) proper are measured on a scale with

 equidistant increments between its adjacent members. The primary

 example, of course, is our tempered twelve-tone system. Systems

 that have unequal intervals between elements, such as in diatonic
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 modes, are placed in u-space. Each species of linear space has a

 cyclic analogue which collapses that linear space into modular

 congruences. Cyclic p-space is pitch-class space (pc-space) and

 cyclic u-space is named m-space. Like c-space, the linear and cyclic

 spaces can be ordered or not, respectively defining segments or sets

 of notes. Generally speaking, the musical operations most familiar

 in the literature of music theory transform elements in any of these

 spaces into other elements within the same space but not into

 elements in another space. The latter type of transformation is of

 course vital to composers, and it is a topic that Morris addresses

 primarily in the final chapter of the text.

 As the title of the book indicates, pc-sets and pc-segments

 are of primary concern. Chapter 3 surveys the field. In describing

 relations and transformations within pc-space, Morris chooses wisely

 and extensively from the impressive literature on pc theory that has

 accrued over the past thirty years. To be sure, that literature

 includes his own significant contributions to the field. The reader is

 impressed throughout by the ways Morris integrates the

 contributions of so many major theorists. The topics are too many

 to consider here, even in a sketchy way, but they include various

 alternatives in defining pc-set equivalence classes, various types of

 similarity relations, and some preliminary work on twelve-tone

 operations and ordinal permutations as they affect pc-sets and

 U-space is little utilized in the course of Morris's text because he is concerned

 primarily with compositions in p-space. Nonetheless, the concept is a valuable one

 for work in many areas of musical research. For example, in much nineteenth-

 century music, altered scale degrees may be understood to express alternate ways to

 fill some discrete interval of variable u-space.

 The discussion of epimorphic mappings in Chapter 3, pp.60-61 is also interesting

 in this respect.
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 segments. In addition, Morris defines and constructs arrays that

 tabulate intervallic multiplicity within and between sets, as well as

 arrays that tabulate the affects of operators on pc sets and segments.

 Chapter 4 is concerned with operations per se and

 principally, though not exclusively, with the twelve-tone operators

 (TTOs). Like the treatment of pc theory, that of TTOs is fairly

 exhaustive, including group-theoretic properties, commutativity,

 periodicity, cyclic representation, and the transformation of

 subgroups into cosets or other subgroups (automorphisms). Toward

 the end of the chapter, pp.170 and following, there is consideration

 of 1-to-l operations that are not equivalent to TTOs. Since TTOs

 are normatively the basis for defining pc-set equivalence, the most

 standard being Allen Forte's canonical operations of transposition or

 inversion plus transposition, non-TTO transformations can map one

 set-type onto another. Moreover, such non-TTOs form subgroups

 of equivalence classes determined by those subgroups of

 nonmultiplicative TTOs with which they commute. This property

 alone opens an exciting field of inquiry for theorists and composers

 alike. The chapter concludes with consideration of permutation

 operators where the objects being transformed are conceptualized as

 ordered positions rather than pcs. The correlation of ordinal

 operations with pc operations, given a permutational system, is

 highly cogent, a fact recognized early on by Milton Babbitt. Morris's

 treatment of such correlations is an important aspect of the book

 and should be especially helpful in suggesting approaches toward

 those particularly knotty problems. (The solution to the problem

 This property follows from theorem 4.12.4, p. 126.
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 studied in Design III of Chapter 6 is particularly brilliant in this

 regard.)

 The compositional designs of Chapter 6 are generated from

 more basic two-dimensional arrays of pitch-classes in which the rows

 are normatively, but not necessarily read as successive events and

 where the columns typically represent simultaneities. The

 composition of such arrays as well as a series of transformational

 techniques and associative concepts that transform those arrays into

 more complex and specific compositional designs are studied in

 Chapter 5.

 As already noted, Chapter 6 draws on the cumulative

 techniques and concepts that have been developed earlier

 throughout the text. Even the simplest of the designs involves a

 rather complex integration of material. Thus, Morris shows by these

 models how to synthesize a knowledge of set properties and group

 properties of operations toward achieving desired compositional

 results. Through understanding those techniques and constraints in

 a more general way, the advanced student of composition is

 challenged to achieve a similar mastery and integration within his

 own musical imagination. For this reader, that challenge in the

 context of a study that helps the student to meet it, is the most

 significant achievement of Morris's book.

 The final stages of interpretation require that various spatial

 and temporal dimensions of musical imagination interrelate and

 communicate. The problem is multifaceted, and particularly

 difficult because as we move toward specificity, individual contexts

 and requirements play a more and more important role. The

 problem is complicated by the fact that choices in one dimension will
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 be affected by constraints of another. Exhaustive treatment would

 require another text, as ambitious as the present one. Or, perhaps, it

 is here where we move from theoretical text to musical composition

 itself. Nonetheless, Morris provides inroads, discussing, for

 example, difference routes (much like flow-charts) for moving from

 pc-sets to pitch segments (pp.286-289). In addition, Morris defines

 and examines ways of thinking about time that correspond to each

 type of pitch space; relative, linear and cyclic. (Of course, he is

 aware of the profound differences between the two dimensions and

 also of the mutual conditioning of the perception of one by objects

 and functions in the other.)

 Some Fundamental Concepts and Techniques

 In the early 1970s Bo Alphonce did some ground-breaking

 work on the applications of pc matrices in studying pc invariance

 between a segment and its transpositions or inversions. Morris

 extends the use of matrices to study a wide diversity of relations in

 every type of pitch space and in every type of time space that

 correlates with those pitch spaces.

 Stated abstractly, matrices are two-dimensional arrays that

 tabulate ordered intervals from elements in a segment represented

 on the vertical axis (X) to one represented on the horizontal axis

 (Y), where the ordered intervals obtain by applying some function

 Bo Alphonce, The Invariance Matrix," Ph.D. dissertation, Yale University, 1974.
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 mapping X into Y. Generalizing these properties, the X and Y

 axes of a matrix can each hold any number of objects (or any kind of

 objects), and the function and hence intervals mapping X to Y can

 be any defined function. Thus, for example, intervaliic relations

 between any sized segments in any of the various pitch-spaces or

 time-spaces can be studied on a matrix. Ingenious application of

 such matrices is a conspicuous feature throughout the text. In our

 context here, we will cite two short examples.

 In Chapter 4, pp.139-141, Morris studies Operator
 Invariance Matrices. The columns and rows of these matrices

 comprise strings of operations. The matrices are used to discover

 For those not conversant with Alphonce's work, some thought on the properties

 of the standard 12- tone matrix may be helpful. The usual 12-tone matrix names the

 first pitch-class of its Y axis 0, and measures ordered intervals along the Y axis in

 ascending semitones relative to 0, mod. 12. The X axis is derived by taking the

 ordered residues mod.12 of Y (values of 12-y, mod.12 for every y in Y). In standard

 TTO nomenclature, X is TQI(Y). The entries in the matrix measure intervals from
 X to Y mapping by summation. Since every column of entries is derived by adding a

 constant to X and since every row of entries is derived by adding a constant to Y, the

 resulting columns and rows preserve the intervaliic structures of X and Y
 respectively. In other words, they form the familiar set of 12 transpositions and 12

 transposed inversions of the source row Y. Yet, there is another way to orient

 oneself to such a matrix. Segments that are inversionally related have a constant

 sum between their corresponding pcs (or pitches for that matter). For example, two

 segments that invert about 0 will sum to 0. This is because every pc + n from 0 in

 segment S will be reflected by one -n from 0 in segment TQI(S) and every (0 + n) + (0-
 n) = 0. Thus, each entry measuring <x,y> by summation maps the inversion of x

 transposed by the interval denoted in the entry onto y. Now, ordered elements in X

 mapping onto ordered elements in Y will form diagonals in the matrix. Thus, for

 example, the "main diagonal" in a standard 12-tone matrix comprises all 0's reflecting

 the property that T^I of X is Y. By isolating and studying the various diagonals in
 such matrices, invariant segments held between transposed inversions of X and Y

 may be discovered. In a similar way, a matrix whose entries are tabulated by taking

 differences between every x in X and every y in Y will show transpositional relations

 between members of x and those of y.
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 transformations of those strings that will hold elements in common

 with one another. Morris composes two strings /¥/ and /G/, where

 /¥/ = <TX TBI T6 RI> and /G/ = <T3 Tg T3I RT2I RT4>. The

 inverse of /G/ = /G/"1 = <T9 T4 T3I RT2I Rg>. We construct a

 summation matrix mapping members of /G/ onto members of

 /¥/. (Morris could have constructed a subtraction matrix mapping

 /G/ onto /F/ with the same resulting entries.)

 Tl TBI T6 RI

 T9 TA T2I T3 RT3I
 T4 T5 T7J TA RT8J
 T3I T4I Tg T9I RT9
 RT2I RT3I RT9 RTgl TA
 RTg RT9 RT3 RT2 T4

 Since the entries are summations of members of /G/"1 and /F/,

 they are equivalent to differences between members of /G/ and

 /F/. For example, TA at entry (0,0), where the left number stands

 for the row 0 and the right number stands for the column 0, indicates

 the first member of /G/ will map onto the first member of /F/ by

 ^A' Comparing the first member of each string, we find T3 for g in

 /G/ and T^ for f in /F/ and indeed TA maps g onto f. The matrix is

 useful for discovering ordered elements in transforms of /G/ that

 will be held in common with ordered elements in /F/. The entries

 RT9 and TA are particularly interesting in this respect. The

 diagonal of RT9's shows that under that transformation the last

 three elements in /G/ will map in retrograde onto the first, second

 and last elements of /F/.
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 RT9(/G/) = <Tt TB, RT0I RT5 RTQ>

 /F/= ^TglTgRT,,^
 The diagonal of T^ entries shows that the first, second and

 fourth members of TA(/G/) will map onto the first third and last

 members of /¥/.

 A very different type of matrix is exemplified in Morris's

 contour graphs, pp.283-285. In these matrices, which are sparse

 arrays, one axis denotes objects (or states) and the other denotes

 ordering of those objects. The matrix itself is transformed by

 various operations. For example, if we have an ascending set of

 pitches B A C D named respectively niQ, m^, m2 and m^ and an

 ordering of those pitches 09-03 so that the order is A B C D,

 forming contour P we can depict contour P and operations upon it

 by a family of graphs. (The examples are my own, but the procedure

 is derived from Morris, p.284. The operation X exchanges the m

 and n axes.)

 Countour P

 m3 D
 m2 C
 m^ A
 m0 B

 iiq nx n2 n3

 Contour IP

 m0 B
 m-. A

 m2 C
 m3 D

 % nl n2 n3
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 Contour RIP

 m0 B
 m^ A
 m2 C
 m3 D

 n3n2nlnO

 Contour XP

 n3 D
 "2 C
 n1 B
 IlQ A

 ni/\ m* ni^ m-i

 Contour RIXP

 IlQ A
 n1 B
 n2 C
 n3 D

 ni'i m^ m* ihq

 Contour RP

 m3 D
 m2 C
 m^ A
 m0 B

 n3 °2 nl °0

 Contour IXP

 % A
 nj B
 °2 C
 n3 D

 ni/\ m<i in^ m^

 Contour RXP

 n3 D
 n2 C
 n1 B
 iiq A

 ni'i m^ nii diq

 Another formulation that is used in numerous contexts

 throughout the text is the representation of operators by cycles, a

 subject first developed by Milton Babbitt. For example, the cycles

 for T4 are (0 4 8) (1 5 9) (2 6 A) and (3 7 B) (where A=10 and

 B=ll). Studying an operation's cycles can inform us about the

 operation itself; for example, the periodicity (i.e. the number of

 applications that will map S back onto itself) of a TTO is equal to

 Twelve-Tone Invariants as Compositional Determinants," The Musical Quarterly
 46:246-259.
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 the length of its longest cycle. Or, cycles are useful for studying

 mappings under those operators; for example, a set S is invariant

 under a TTO H if the members of S comprise only complete cycles

 (one or more) of H, while set S maps into a non-intersecting set Q if

 the members of S comprise non-adjacent pcs in the cycles of H.

 But, cycles are particularly interesting because of the ways they

 interrelate operations.

 For example, the powers of any TTO form a cyclic group of

 operations and where the order of the cyclic group is not prime, the

 group contains cyclic subgroups of orders that integrally divide it

 (p.151). Thus cyclic properties display hierarchical relations that

 may be compositionally cogent. Another interesting property of

 cyclic groups allows secondary segments that also display the cyclic

 properties to be embedded in some primary dimension (pp.154- 155).

 For example, T^ can generate a cycle of <037> transforms which

 embed secondary segments of <061> transformed by the group. Of

 course, the dimensions can be reversed.

 So = 037
 S3 = 36A
 S6 = 691
 S9 = 904

 secondary:*) = 061
 3 = 394

 6 = 607

 9 = 93A

 Yet another use for cycles is in defining non-TTOs. Morris

 is particularly interested in creating non-TTOs that commute with

 subgroups of TTOs. To do this, he applies another cyclic property:

 if the set of cycles for an operation is invariant under some other
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 operation, the two commute (see p.134 and p.171). One example is

 setH:

 (081)(B3A)(627)(594)
 A B C D

 H commutes with Tg, mapping cycles A-C and B-D, with

 T5I, mapping A-D and B-C, with Tgl, A-B and C-D and with TQ.

 If H is applied to the members of some set-class, where set-class is

 defined by equivalence through transposition or inversion plus

 transposition, the collection of H forms sub-collections that are
 o

 related by the TTO subgroup with which H commutes.

 A concept closely related to cyclic operators is that of

 equivalence classes formed by subgroups (or cosets) of operations.

 For example, the subgroup /J/{Tq Tg T2I Tgl} forms the

 jfhis topic is discussed in some detail on pp.170-177. Unfortunately, there are

 numerous typographical errors throughout this section of the book, mostly involving

 labels, making the task of understanding unnecessarily difficult. Two of the more

 crucial sets of typos are on pages 175 and 176. The example on the top of p.175 is

 based on the operation H forming the cycles (017)(5)(34) (2B8)(6)(9A). The
 equations at the top of the example should read:

 X: 3984A= RT6HX
 T6X:

 TaIX:

 T^X

 On page 176, a new non-TTO is defined as G (081)(B3A)(627)(594). The subgroup

 of TTOs with which G commutes is mislabelled on this page and on the next. It

 shouldbc: {To^TjITgl}.
 A mathematical group requires closure (so that any composition of operations

 within the group maps onto an operation within the group), that every operation

 have an inverse (an operation that "undoes" the transformation of the first), and that

 there be an identity operation. The inverse for any transposition of pcs is its

 complement mod.12. Each T I is its own inverse. A group is a subgroup of a larger

 group when all of its members are members of that larger group.
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 equivalence classes {17}, {0628}, {B539}, {4A}. This is displayed

 by reading the verticals in the example below.

 TQ: 0123456789AB
 T6: 6789AB012345
 T2I: 210BA9876543
 T8I: 876543210AB9

 In eyelid groups, equivalence classes are cycles of the

 generator of the group. And generally, the equivalence classes of a

 group are partitioned into the equivalence classes of its subgroups.

 Morris studies transformations of such equivalence classes as they

 are mapped into cosets of subgroups, and into automorphisms.

 The topic is extremely cogent both in studying classical twelve-tone

 technique, such as the relations among quartets of rows that inform

 so much of Schoenberg's music, and in studying techniques

 developed by Babbitt and subsequent generations of composers.

 Another central topic arises out of the methodological steps

 that immediately precede the composition of pc designs in all of

 their complexity. This requires composing, expanding, modifying

 and combining more simple arrays of pcs. We will consider only the

 last topic here, techniques for combining arrays. Morris develops

 three basic functions by which arrays are combined with other

 arrays. The most general of these is a function named MERGE.

 MERGE involves keeping the integrity of the columns and rows of

 two arrays intact as the arrays are combined. For example, one

 simple MERGE(A,B) would be as follows.

 A coset results from mapping a subgroup into a non-group by some operation

 not in the group (see p.164). An automorphism results from mapping a subgroup

 into itself or into another subgroup (see pp.167, 168).
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 A:AAA B:BBB MERGE(A,B): A A A
 AAA BBB B B B

 AAA

 BBB

 Two more examples of MERGE(A,B):

 AAA

 AAA

 BBB

 BBB

 AA A

 AA A

 B BB

 B BB

 The full notation for MERGE names the arrays to be

 merged, places some position in A relative to some position in B,

 and denotes the pattern of rows and columns for A and B.

 Another function "superimposes" columns and a third

 "concatenates" rows. Two simple examples of each follow.

 SUPER (A,B)

 AAA or AAA

 AAA AAA

 BBB BBB

 BBB BBB

 CAT (A,B)

 AAABBB or AAA

 AAABBB AAABBB

 BBB

 The functions that combine arrays are themselves combined

 with a family of other techniques and functions that allow the

 The full notation for MERGE is given on page 226, however the notation is

 applied inconsistently throughout the text. The inconsistency arises because at times

 the row design is denoted before the column design while at other times this order is

 reversed. Several of the MERGE functions are also marred by typographical errors.
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 composer to creatively transform pc arrays with great flexibility and

 specificity. To be sure, it is these transformational techniques that

 allow source arrays to be useful as the basis for compositional

 designs.

 Some Observations on the Theoretical Approach

 Despite Morris's statement that a compositional theory

 "must not specify, in any but a rather tentative manner, the stylistic

 component of the music," and other statements like it, Morris's

 work is highly conditioned by his own attitude toward composition.

 Nor should it be otherwise. As we have noted from the beginning,

 Morris is clearly allied with a specific tradition of thought in and

 about music. The constraints that help to define a community of

 thought bring expressive freedom to those who operate comfortably

 within the community. Yet, a conflicting sense of historical and

 cultural relativism is evidently a strong component of Morris's self-

 awareness. This sense causes Morris to step outside of his own

 tradition, and to recognize how its freedoms are constrained by its

 assumptions. Thus, within the text, at times there is a tension

 between two conflicting urges, one being grounded in the

 assumptions and requirements of a specific community and the other

 reminding the reader that any or all of those assumptions may be

 trashed.

 Morris's compositional predilections are implied throughout

 his discussions of musical objects and functions, and they are made

 fairly explicit in his compositional designs. Near the beginning of
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 Chapter 6, the text notes The designs were composed to bring up a

 number of issues that often interest composers and theorists alike."

 A footnote is appended to this sentence, and it reads like a legal

 disclaimer: "None of these issues is to be taken as a mandatory

 requirement for a normative attribute of 'successful' designs."

 Disclaimer nonetheless, the "issues," especially given the designs that

 follow, might have been described as "desiderata." Such desiderata

 are not separable from the kinds of objects and functions that have

 been described earlier in the book. They are basic aspects of the

 musical language that one becomes conversant with as one masters

 the ways of thinking about music that Morris's book is about. Thus,

 we find coherence, a sense of sonic unity, closure and saturation, for

 example through set completion and overlapping, hierarchization, as

 in the subsumption of smaller temporal units into larger ones, and

 heterarchies (Douglas Hofstadter's term), associations that are not

 hierarchical in nature, such as previews and recollections. It is safe

 to say that every one of these issues informs each of the

 compositional designs in the book. Yet the point remains, that such

 ideas and techniques are extremely flexible and can be extended to

 apply in extraordinarily diverse ways.

 Another interesting and recurrent concern of the text is

 generated by the desire that its rigorous formal thought may result in

 aurally lucid music. Although Morris's book is not a theory of

 musical perception, neither is it a book about abstract formalisms.

 Thus from time to time, Morris stands back from the formalisms

 and thinks about ways to articulate formal properties in real

 compositional contexts. Of course, the concern is essential.

 However, many of the formalisms are not meant to be perceptible in
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 exact "real-time" analogues. In other words, there is often a disparity

 between method and result, between efficient cause (making the

 thing) and material cause (the thing that is made). In such cases, it

 is the result of applying functions to objects that concerns the

 composer primarily, and the formal function, in correct perspective,

 is a means to an end. Morris is sensitive to this problem and he

 addresses it, for example, in his discussion of non-TTOs.

 Like TTOs which include M, it is not necessary for these

 operations to have direct aural effect. Their prime
 importance is that they can help produce interrelations

 (especially order interrelations) among entities related by
 TTOs.

 In many instances a more "analytic" notation might bridge

 the gap between formal functions and compositional results. Such

 notation would name relations and transformations that are aurally

 cogent in a specific context, although it might not have the general

 systematic and specifically group-theoretic properties that Morris

 wants. In a similar way, a more context sensitive notation for pitch

 and pc space would not necessarily have a fixed 0 reference.

 It may be argued that even "the thing that is made" is once removed from an

 even more basic requirement in composition; that "the thing made" be suitable for

 its functional context within a composition. Following through in Aristotelian terms,

 the composer needs to correlate efficient, material and final causes.

 jTiis topic is considered in depth by David Lewin in Chapter 3 of Generalized

 Musical Intervals and Transformations, (New Haven: Yale University Press, 1987).
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 Some Practical Difficulties in Reading and Applying
 the Text

 First on the list of practical difficulties is an unusually large

 amount of typographical errors and editorial slips, virtually all of

 which involve integers. Most of the typos are easy enough to spot

 and correct, however some are quite disorienting. One hopes that

 Yale University Press quickly publishes a list of errata. And one

 hopes that the list be made available to those who have already

 purchased the book. We will point out only two errors, whose

 correction should be helpful in reading the respective passages.

 The example on the bottom of p. 193 seems to be the wrong

 example, it should be something like:

 0137

 0 0137

 2 2359

 6 6791

 On p. 259, rows 1 and 2 in the F system of Design V evidently were

 shifted. The correct display is:

 QQQ QQQQQ

 1) 5 B 9436 2 0

 2) 9 3 1 8 7A 6 4

 3)

 In addition, we will note that poset graphs on pp. 201, 209, 212, 214,

 216 and 265 contain errors. The reader who has followed Morris's

 discussion should easily be able to correct these.
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 Another difficulty in the physical make-up of the book is in

 the use of italics in many examples to distinguish some integers from

 others. Given the typeface in which the book is set, it is extremely

 difficult to distinguish italic integers from those in normal print.

 Thus, examples that contrast numbers in italics with numbers in

 normal printface are unnecessarily difficult to read. Perhaps a

 second edition of the book might consider some more vivid change

 of printface within such examples.

 A different set of problems arises because of difficulties

 intrinsic to the subject matter and because of the concise mode of

 presentation. There are numerous places where Morris either

 presents information, or composes an example where desired

 properties obtain, without explicitly stating how the information was

 derived or how the example was fashioned. In most instances, the

 reader should be able to fill in the missing steps either by using

 information previously presented or by extrapolation. This kind of

 interaction with the book is a necessary and rewarding aspect of

 working through it. Keeping this in mind can also be useful for

 teachers who may use the book with advanced students.

 A related sort of interaction is helpful in coming to terms

 with the generalizations of the techniques and problems involved in

 composing specific compositional designs. Whereas elsewhere in the

 book Morris provides formal algorithms (for example in his

 discussion of chains of SCs on p.90 and following), here the

 discourse is through straight descriptive prose along with examples.

 One senses that Morris is avoiding the "cookbook" approach about

 which he remarks in Chapter 1, and that is a wise decision.

 Nonetheless, because the problems, especially in some of the more
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 complex designs, are rather difficult, it is helpful for the reader to

 break down Morris's discursive language into a number of discrete

 steps. Such an approach would be especially helpful if the designs

 are used to generate a set of compositional exercises.

 Conclusion

 In Composition with Pitch-Classes Robert Morris restricts

 himself to a specific subset of music theory in the twentieth century.

 That subset however forms an integral body of theory with vast

 ramifications which even here, the author would surely agree, are

 barely touched upon. Although composers may value other

 composers for "what they have done," a more profound evaluation is

 based on "what they suggest." To the degree that a creative

 enterprise is suggestive of further enterprises, it is open-ended. The

 richness of this book is in its open-endedness.

 In working through Composition with Pitch-Classes, I have benefited from lengthy

 conversations with my friends and colleagues Steven Cahn, Stephen Dcmbski and

 Joseph Straus.
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