
 Meter as a Mode of Attending: A Network

 Simulation of Attentional Rhythmicity in Music

 by

 Robert O. Gjerdingen

 As you read this sentence, especially if you are reading it

 carefully enough to know that the main verb has yet to appear, you

 are obviously paying considerable attention to it. But should your

 reading lamp suddenly explode or your chair collapse, your attention

 would quickly turn to the pressing calamity. Reading would stop.

 You could not resume reading in earnest until once again you were

 ready to give it the lion's share of your attention.

 The point of this illustration is that we have only so much

 attention. Consciously or unconsciously, we must apportion
 attention to the many concurrent cognitive tasks that require it. Yet
 there are often more demands for attention than we can fill. Just as

 power companies must ration electricity during periods of excessive

 demand, we must allocate attention according to priorities. Urgent

 demands by high-priority activities must at times be met even if they

 occasionally so deplete reserves that lower priority activities are

 forced to curtail operations.

 The constraints imposed by limited attentional resources

 show themselves most clearly in highly demanding tasks. Playing a

 musical instrument, for example, requires as much or more attention

 than many people have to give. Novices in an ensemble may be so
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 68 Integral

 intent on playing their own part that they are unable to divert

 attention toward listening to others. Even skilled performers may

 find sight-reading or transposition to be tasks calling for all the

 attention they can muster. I remember once trying to learn to play

 the organ. Negotiating the pedals required so much of my attention

 that whenever I encountered a passage demanding nimble footwork,

 my left hand would stop playing. Foundering in the rough seas of

 Bach, only my feet and right hand found room in the attentional
 lifeboat.

 But what 15 "attention"? When we pay attention to
 something, what are we doing? The psychological literature on

 attention is large and represents decades of active research into

 these questions. For the purposes of the present discussion, I might

 summarize that research by describing attention as a catchword for

 the many diverse aspects of human information processing that

 focus, filter, or otherwise guide our perceptions of the world. For

 example, at the very low level of sensory organs, physical and

 neurological constraints can produce the phenomenon of attention-

 like filtering. The human ear could thus be said to pay special
 attention to midrange sounds if only because it is physically unable

 to respond well to extremely high or low frequencies. By contrast, at

 higher levels of perception and cognition, the focusing of mental

 activity must be effected through more sophisticated processes.

 Take the case of concert-goers enjoying a Bach fugue.
 Knowledgeable listeners will smoothly shift their attention from

 voice to voice as they follow the subject through its many musical

 incarnations. To manage this directed flow of attention, one
 presumes they must first store a mental representation of the subject

 and then monitor the entire contrapuntal fabric for appearances of
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 the target theme. But this is certainly not a passive act constrained

 by some physical anatomy. The listener must actively infer,
 construct, search for, recall, evaluate, and modify what are purely

 mental entities. "Attention" thus runs the gamut from the selective

 transduction of sensory stimulation to something akin to thinking
 itself.

 Monitoring the acoustic spectrum of a lively fugue for the

 entrance of the subject is a Herculean mental task. The listener

 must find ways to clean up an Aegean stable of rapidly shifting

 waveforms spread across a wide band of frequencies. Composers

 did, of course, routinely make the listener's job somewhat easier by

 ensuring that the entry of the subject had perceptual salience. Bach

 often had a voice rest before it reentered with the subject, and he

 generally gave a conspicuous contour, rhythm, or ornament to a

 subject's initial motive. Yet these tricks alone would not significantly
 reduce the drain on a listener's limited attentional resources. More

 fundamental to the strategic rationing of attention are the ways in

 which traditional composers and listeners have brought about a

 schematization of musical space and time. Instead of attending to an

 infinitude of possible pitches, we attend to the handful of tones in a

 scale. Instead of attending to an infinitude of possible moments, we

 attend to the handful of beats in a meter. By these means the

 listener's task is reduced from one of attending equally to all
 possible frequencies at every possible moment to one of attending

 differentially to tones and beats of varying importance. Thus if the

 fugue subject begins on a metrically strong tonic, one is more likely

 to detect its recurrence at some later metrically strong tonic than

 anywhere else.
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 The psychologist Mari Riess Jones has written expansively

 on the subject of temporally modulated attention. Several of her

 experiments use simple musical stimuli to test whether subjects are

 capable of performing temporally conditioned "attentional
 targeting." As musicians might hope, results indicate that people

 are quite good at synchronizing their attention with clearly presented

 temporal patterns. Jones's work, worthwhile reading for those

 interested in questions of musical rhythm and meter, is grounded on

 a basic observation about the interplay between organisms and their

 environments. She notes that a creature's world is patterned in both

 space and time. Those organisms capable of discerning and
 internalizing their world's invariant spatio-temporal patterns will

 find themselves at an advantage over their competitors.

 For those organisms known as listeners, the musical
 environment is usually teeming with recurrent temporal patterns.

 But how do listeners synchronize themselves with these patterns?

 What metronome inside of us is capable of ticking to the beat of a

 rumba, a sarabande, or a bolero? The human body does of course

 have rhythms of its own. The circadian rhythm of twenty-four hours,

 for example, helps to determine when people feel like sleeping or

 rising. But not even the most hyper of hypermeters extends to a full

 Sec, for example, Man Riess Jones, "Only Time Can Tell: On the Topology of

 Mental Space and Time," Critical Inquiry 7 (1981):557-76; idem, "Structural
 Organization of Events in Time: A Review," Time, Mind and Behavior, ed. FA.

 Michon and J.L. Jackson (Heidelberg: Springer Verlag, 1985); and idem,
 "Attentional Rhythmicity in Human Perception," Rhythm in Psychological, Linguistic,

 and Musical Processes, ed. J.R. Evans and M. Clynes (Springfield, 111.: Charles
 Thomas Publishers, 1986).

 Jones, "Attentional Rhythmicity," p. 31.
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 day. Within the temporal domain of ordinary meters- perhaps one

 to six seconds-biological rhythms appear unable to provide us with a

 practical timepiece. So we must look to the human mind. And if it

 is in the mind that we fashion a musical metronome, that

 metronome must in all probability be constructed of interconnected
 neurons.

 Imagine two populations of neurons. Let us call them A

 and B. As shown in Figure 1, population A excites population B, but

 population B inhibits population A. Outside input in the form of

 positive excitation can be sent to population A, and both populations

 contribute to a positive output that can be sent to still other neural

 populations. If a small input begins to excite population A, its
 internal level of activation will start to increase. This rise in

 activation is driven both by the external input and by the internal
 A

 feedback between individual members of this neural population.

 When the activation in population A rises above a certain threshold,

 excitation will begin to flow to population B and the activation of

 that population will also begin to increase. As it does, population B

 will increasingly inhibit population A, eventually forcing the
 activation of population A below the threshold of its output to

 population B. As a result, excitation will cease flowing to population

 B, its inhibition of population A will decrease, and the now
 uninhibited activation of population A will again increase. As the

 reader may have already surmised, the activations of these two

 populations will enter a regular up-and-down oscillation as the

 A point argued by the Israeli psychologist Dan Zakay in response to questions at

 the conference of the International Society for the Study of Time.

 Feedback within a population, as well as some indirect inhibition between
 populations, is a sigmoid function of each population's level of positive activation.
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 74 Integral

 opposing forces of excitation and inhibition ebb and flow. The two

 populations make up the "tick" and "tock" of a neural metronome.

 Populations A and B form a complex dynamic system.
 Changing any of the parameters that govern its operation will likely

 affect the way it oscillates. In order to experiment with such
 alterations, I created a computer simulation of the two populations

 and recorded their combined output during sustained oscillation.

 Figure 2 shows a graph of the system's output in what I call its

 canonical form, that of a sinusoidal wave. The particular graph of

 Figure 2 is not, however, a perfect sine wave. The ascent to each

 crest takes longer than the descent to each trough, the ratio being

 about 7:5. This particular mode of neural notes inigales is but one of

 many possibilities. From the limited experiments I have done, it

 would appear that any ratio close to 1:1 can be obtained by minor

 adjustments to the system's parameters.

 More substantive changes to the system can introduce more

 complex periodicities in its output. For instance, by doubling the

 rate at which excitation and inhibition flow between the populations,

 I obtained the output shown in Figure 3. Here the neural
 metronome is beating waltz time. Two different periodicites-the

 "quarter-notes" and the "dotted half-notes"-- combine to form a

 composite, ternary output. Even further degrees of complexity can

 be achieved by adding additional neural populations. Figure 4 shows

 a population C added to populations A and B. With all parameters

 set as for the original A-B simulation shown earlier in Figures 1 and

 2, the A-B-C simulation oscillates in march time, as shown in Figure

 5. As before, population A excites population B, which in turns

 inhibits population A. Now, however, population B also excites

 population C, which in turn inhibits population B. Activation
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 76 Integral

 reaches a maximum first at population A, then at B, and then at C,

 after which the cycle repeats. The greatest output occurs when both

 A and B have positive activations and the next greatest when both B

 and C have positive activations. The difference between these
 "strong" and "weak beats" is caused by population A having the

 additional excitation of its external input.

 The oscillations thus far discussed were all obtained by

 sending each system a steady-state input. A more interesting, and

 perhaps more realistic, case involves sending the system a pulsating

 input. Figure 6 depicts the A-B-C simulation discussed above as it

 receives a pulsating input. At first the pulsations arrive at simulated

 one-second intervals. The system responds by oscillating in three-

 four time with each quarter-note one second in duration. As before,

 the "strong beats" are an emergent property of the system and not

 implicit in the input. Toward the right of the figure, the system is

 shown adjusting as the interval between pulses lengthens by about 50

 percent. The smooth shift to a two-four meter shows how simply the

 system can accommodate a hemiola. Assuming that the pulsations

 were derived from the perceived rhythmicities in a piece of music,

 the figure suggests how easily and automatically listeners could
 reorient their sense of the meter.

 The point of the preceding simulations has not been to

 suggest that anyone knows exactly how the human brain is able to

 synchronize itself with a musical meter. Nor is any claim made that

 the brain keeps the beat with these exact neural mechanisms. But
 the simulations do warrant two observations. The first is that neural

 networks oscillate as a matter of course. Anyone who simulates

 these complex dynamic systems on computers knows how difficult it

 can be to prevent them from oscillating. If just two groups of
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 neurons can act as a type of metronome, then clearly the human

 brain's 10,000,000,000 neurons are capable of ticking out any meter
 in common use.

 The second observation is that the output from a small

 neural metronome could be used to metrically alter the performance

 of a much larger neural network. Just as the tiny bias voltage from a

 microphone can modulate the performance of a huge amplifier, a

 small signal from a neural metronome could modulate the
 performance of a major portion of the musical mind. If such a

 metronomic signal were to cause regular fluctuations in a person's

 sensitivity to musical information, the result would be the
 phenomenon of metrically modulated attention. For the listener,

 musical events occurring on strong beats would then "feel" stronger

 than other events, even if the perceptually strong beats were

 objectively no louder, higher, or more strident than the weak beats.

 For the psychologist or music theorist observing the listener, it might

 well appear that the listener was consciously "paying more attention"

 to events occurring on strong beats, even though the phenomenon

 was brought about by a mostly automatic, low-level process.

 To carry this speculation further, we might surmise that the

 ametric individual- an imagined person unable to set in motion a

 neural metronome-would be at a disadvantage in listening to music.

 While the metric individual would have heightened attention at the

 very moments when important musical changes are most likely to

 occur, the ametric individual would not. He or she would be paying

 equal attention to everything.

 Because I am not ametric, or like to think I'm not, I find it

 difficult to imagine what ametric listeners would hear. The objective

 features of music would appear to them in the same form as they
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 appear to you or me. Long notes would be just as long, low notes

 would be just as low. Only the subjective sense of meter would be

 missing. One cannot, of course, run psychological experiments on

 hypothetically defective human beings. Nevertheless, a hypothetical

 ametric experience can be simulated with the aid of a computer

 model of a musically oriented neural network. One can compare the

 functioning of the network as it operates with and without metrically
 modulated attention.

 The musically oriented neural network in question is a

 computer model based on Stephen Grossberg's adaptive resonance

 theory (ART),5 a model I have dubbed VART pour Van. Though its

 internal workings are complex and best described in more
 specialized literature, its external behavior is quite straightforward.

 As shown in Figure 7, the network is composed of two levels roughly

 equivalent to short-term and long-term memory. As a composition

 is "played" to L'ART pour I'art, information about various musical

 features-scale degrees, contours, chromatic alterations, dissonances,

 and so forth-enters the short-term memory of the lower level. As

 more and more new information enters, older information is

 eventually forced out. The amount of music held in short-term

 memory thus depends on what is happening in the music. Short-

 Stephen Grossberg, "A Theory of Human Memory: Self-Organization and
 Performance of Sensory-Motor Codes, Maps, and Plans," Studies of Mind and Brain:

 Neural Principles of Learning, Perception, Development, Cognition, and Motor Control

 (Boston: Reidel, 1982).

 See Robert O. Gjerdingen, "Using Connectionist Models to Explore Complex

 Musical Patterns," Computer Music Journal (1989), in press. This issue is devoted to

 musical applications of neural models.
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 80 Integral

 term memory will be longer for a slow, uneventful piece than for

 something molto agitato ed allegro.

 The network's upper-level attempts to recognize and
 categorize the patterns of musical features that flash across the

 lower level. It does this by comparing the pattern in short-term

 memory with various templates or prototypes that it has learned and

 stored in long-term memory. When there is a perfect match
 between pattern and prototype, the network slightly adjusts its

 prototype to allow for the discrepancy. And when there is not even a

 rough match with any prototype, the network forms a new prototype

 (if it has any memory remaining). As creator of the network, I

 played no real part in these decisions. I merely set the network's
 basic level of tolerance to mismatches and allotted the maximum

 number of prototypes that it could form. L'ART pour /'art's
 knowledge of music thus derives almost entirely from the music it

 has "heard." As a thoroughly self-organizing system, the network
 structures itself in accordance with the structures that it can infer

 from its musical environment.

 In previous experiments, L'ART pour Vart had been taught

 Mozart's six earliest pieces, the small keyboard works KVla-d, KV2,

 and KV3. For the sake of comparison, I chose to study metrically
 modulated and unmodulated attention in the context of these same

 pieces. The first step was to convert these pieces into a form
 acceptable to the network. L'ART pour Vart is programmed to

 perceive patterns of excitation generated by hypothetical feature

 detectors. Thus real music must be converted into arrays of musical

 features before it can be fed into the network. I performed this

 conversion manually by going through each score and answering an

 array of thirty-one elementary, yes-or-no questions about each
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 musical event (e.g. Did the melody just ascend? Did the melody just

 descend? Is the melody now on the tonic pitch? Is the melody now

 on the supertonic pitch?, etc.). It is important to note that although

 I determined which feature detectors responded to which events,

 U ART pour Vart only received an unlabeled pattern of excitation. It

 did not know that one excitatory signal meant something about the

 melody or that another meant something about the bass. All it

 received was an abstract, nameless pattern of excitation that might

 or might not resemble any pattern it had encountered before.

 The next step was to scramble the network's long-term

 memories. By randomizing all the mathematical values that
 represent the associations between short-term patterns of neural

 activation and long-term memories, I could force the network to

 begin its computerized life as a perfect tabula rasa. And by using the

 same random values for both the metrically modulated and
 unmodulated experiments, I could force both simulations to begin

 from the same starting point.

 The learning trials consisted of seven runs through all six

 pieces. Both the rate of learning- the extent to which the network

 could, if necessary, adjust its prototypes-and the network's tolerance

 to mismatches were reduced following each run. Learning was thus

 fastest and most literal-minded when the network began its
 education and then became progressively slower and more tolerant

 of diversity as it developed richer, stronger memories. The order in

 which the pieces were learned and the "tempo" at which they were

 presented to the network were also varied so as to prevent these

 arbitrary conditions from materially affecting what was learned.

 Unmodulated attention is conceptually straightforward and

 was quite easy to simulate. The network's short-term memory was
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 merely set so that it received equal stimulation from the detection of

 a musical feature anywhere in the meter. A melodic leading tone

 occurring on a strong beat hence caused no greater effect than if it

 had occurred on the weakest part of the meter. Metrically
 modulated attention raises more questions. For instance, how
 strong is a strong beat? In absolute terms the question may have no

 answer. We have no unit of metrical salience, no international

 standard named after some great musical scholar. (Could the
 downbeat of Beethoven's First Symphony be 74 Sechters strong or a

 6.5 on the Rameau scale?) And even in relative terms one hesitates

 to stipulate by how much the downbeat of a measure is stronger than

 the eighth-note that follows it.

 In the absence of clear guidelines, one can still fall back on

 empirical tinkering. One can try something to see if it works, and if

 it does not, try something else. My course of action was to take as

 an arbitrary baseline the level of excitation used in the simulation of

 unmodulated attention. I then chose an arbitrary increment (18.75%

 of the baseline value) and set new levels both one and two
 increments above and below that baseline. As shown in Figure 8, 1

 assigned the highest level of excitation to that produced by
 downbeats, the next highest to weak quarter-notes, the mid-level to

 weak eighth-notes, the next to the lowest to weak sixteenths, and the

 lowest to weak thirty-seconds and grace notes. These levels were

 directly tagged to the notated meter of each piece and then applied

 to modulate the sensitivity of the network's lower level as it received

 excitatory input. A musical feature occurring on a strong beat now

 caused a greater impact on the network's short-term memory than it

 would have had it occurred on any weaker beat. No attempt was

 made to neurally divine the appropriate meter solely from the
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 86 Integral

 patterns of musical features. In the former case the added
 complexity seemed unwarranted, and in the latter case the problems

 involved demand a separate study.
 Both the metric and ametric simulations were allowed to

 abstract a maximum of twenty-five prototypes from the small

 musical patterns in Mozart's six works. In a few cases the prototypes

 derived by the two experiments were nearly the same. Of course,

 the computer doing these simulations does not think in terms of

 musical concepts- everything must be a number. So from the
 computer's point of view, the memory of a prototype is just an array

 of numbers, each number standing for the strength of the association

 between a particular musical feature and the prototype. Figure 9

 presents the similar numerical arrays representing the prototypes

 stored in long-term memory #10 of both simulations, first in graphic

 form and then in a conjectured musical form. Both versions of this

 prototype have abstracted the voice-leading progression from a tonic

 chord in first inversion to a subdominant chord in root position. The
 main difference between the two seems to be the richer melodic

 memory of the ametric simulation. The ametric simulation, more

 sensitive to weak passing or neighboring tones, incorporated into this

 prototype hints of two secondary dominants (V^ of IV and vii of

 ii) while the metric simulation associated those patterns with other

 prototypes.

 On the sole basis of memory #10 one might assume that

 the ametric simulation did the better job by including more detail in

 its abstractions. But from a larger perspective the reverse is actually

 true. The metric version of memory #10 is the more focused of the

 two and thus less likely to be recalled at inappropriate moments.

 Judged by human standards, the ametric simulation consistently had
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 difficulty in sorting out what was and was not important. Whereas

 the metric simulation allotted just two prototypes to account for all

 the final chords in these six pieces, the ametric simulation
 squandered four prototypes on the same task. Whereas the metric

 simulation produced twenty-five distinct prototypes, the ametric

 simulation only ended up with twenty-four, since one of its memories

 was superseded by another and thus became inoperative. And
 whereas the metric simulation produced prototypes that always

 reflected an abstraction of at least two or more separate musical

 instances, the ametric simulation devoted one prototype of a single

 event occurring but once in all six works.

 Mozart's early pieces are tiny by the standards of his later

 output. Yet counting repeats {JJ ART pour V art slavishly observes all

 repeat signs), these pieces contain nearly eight hundred separate

 attacks of new chords, melodic tones, or tones in the bass. To

 apportion each of these events into just twenty-five categories is no

 small task. The profligate attention to detail by the ametric
 simulation often left it without a suitable prototype to account for an

 important musical distinction. It would have to lump together

 musical events that a human listener would keep distinct.

 Figure 10 shows measures three and four of Mozart's KV3

 (1762, age 6). The numbers above the top staff show which metric

 and ametric memories were excited by each new eighth-note in the

 music. These two recognition sequences-essentially parsings of the

 music-begin in the same way. Memory #5 is replaced by memory

 #10 at the downbeat of measure three, and memory #10 is replaced

 on the following weak quarter. But whereas the metric simulation

 recognized another new event at the downbeat of measure 4, the

 ametric simulation did not. From the perception of the ametric

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:23:22 UTC
All use subject to https://about.jstor.org/terms



 Figure 10. Measures 3 and 4 from Mozart's KV3. Numbers above
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 90 Integral

 simulation, the downbeat of measure 4 is an afterthought. But from

 the perception of the metric simulation, the downbeat of measure 4

 is an important arrival at one of its two "final chord*1 prototypes.

 Clearly the metric simulation has the musically more defensible

 perception.

 In going over the way in which each simulation parsed

 Mozart's compositions, I noticed several such instances where the
 ametric and metric simulations had different ideas about when

 changes in the music demanded changes in prototypes. Counting

 every change from one prototype to the next and noting where in the

 measure these changes occurred, I arrived at the statistics shown in

 Figure 11. In the case of metrically modulated attention, the most

 such changes occur on downbeats and fewer changes are to be found

 at each successively weaker metric location. But in the case of

 metrically unmodulated, or "flat," attention, the most changes occur

 not on downbeats but on weak quarter-notes. Furthermore, changes

 occur on weak sixteenth notes at almost twice the percentage in the

 ametric as in the metric simulation. In a curious paradox, to the

 simulation without a sense of meter these pieces would seem
 somewhat syncopated, whereas to the simulation with a sense of

 meter they would seem rather four-square. I suspect that anyone
 who knows these works would side with the metric simulation. In

 Mozart's earliest efforts at composition, little of significance happens

 anywhere but on the beat.

 The fact that meter is something we can mentally create

 inside ourselves has tended to lead scholarly discussions of it toward

 notions of sophisticated cognitive processing. And perhaps in some

 esoteric musical repertories a measure of sophistication is indeed

 required to discern a meter. Yet in the vast majority of music heard
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 by ordinary people, meter is quite a down-to-earth affair. Could it

 be that the perception of, and internal synchronization with, the

 simple periodicities of basic musical features actually depends on

 low-level processes? The neural metronomes discussed above are

 simple "avalanche" circuits of the type found in many primitive

 organisms. Such circuits help the centipede reliably keep track of

 which leg to move next- a task that, as the joke goes, suffers from

 any higher-level processing. Could the low-level processing of meter

 thus help to explain its subjectively visceral feel? And could the

 overall savings in attention that result from its strategic targeting

 help explain why meter is so nearly universal a feature of everyday

 music? Mere simulations, even those modeling neural circuitry,

 cannot provide direct answers to these questions. But simulations

 do help us advance our understanding of what meter might be when

 viewed as a dynamic process. And simulations can help us to see

 how much our ideas of musical meaning depend on where in time
 we focus our attention.

 Avalanche circuits are discussed in Stephen Grossberg, The Adaptive Self-

 organization of Serial Order in Behavior Speech, Language, and Motor Control,"

 Pattern Recognition by Humans and Machines, Vol. 1: Speech Production, ed. E.C.

 Schwab and H.C. Nusbaum (New York: Academic Press, 1986).
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