
 Some Compositional and Analytic
 Applications of T-Mat rices

 by

 Robert Morris

 Much is already known about the row table, "that 12 X 12

 Latin Square, wherein so many good musical things reside. Not

 only does the table list the 48 forms in a row-class in the smallest

 possible space, the table's layout illustrates general twelve-tone

 invariances possessed by all possible rows. In addition, for those

 well-versed in the mysteries of "invariance matrices," the table allows

 one to glean much about the particular structure of its generating

 row. In this paper, I will confine myself to the T-matrix, of which

 the row table is an instance. After reviewing the main properties of

 such tables and matrices, I shall present a few new-or at least

 unpublished-features and applications of T-matrices, among them

 the embedding of one ordered pc segment (henceforth, pcseg) in

 Milton Babbitt, "Responses: a First Approximation," Perspectives of New Musk

 14/2 and 15/1 (double issue, 1973-4):4.
 A row-class is the familiar set of 48 transforms of a twelve-tone row. For other

 basic definitions used in this article see the glossary in Robert Morris, Composition

 with Pitch-Classes: A Theory of Compositional Design (New Haven: Yale University

 Press, 1987).

 rhe basic theory of invariance matrices is found in Bo Alphonce, "The Invariance

 Matrix" (Ph.D dissertation, Yale University, 1973); and Carlton Gamer and Paul

 Lansky, "Fanfares for the Common Tone," Perspectives of New Musk 14/2 and 15/1

 (double issue, 1973-4): 128-40. See Morris, Composition ... for other interpretations

 of such matrices in pitch, temporal, and transformational "spaces."
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 38 Integral

 another, and the polyphonic alignment of two related or independent

 pcsegs.

 Basic Properties of T-Ma trices and Their Interpretations

 I begin with a row table for the twelve-tone row P,
 <014875936AB2>. Its table is given in example 1. The table forms

 a "latin square1* since each element (i.e., each pc) of P is found once

 and only once in every row and column in the square.

 It is well known that a row table shows its prime row, P, as

 its top row (read from left to right), with the transpositions of P in

 the other rows of the table, arranged in order (from top to bottom)

 according to the inversion of P, TqIP. Similarly, the transpositions
 of the inversion of P are found in the columns of the table (read top

 to bottom), arranged in order from left to right according to P itself.

 (The R and RI rows are found by reading the P and I rows
 backwards.) This symmetric disposition of P and I row transforms

 enforces an inversional symmetry around the table's "main
 diagonal**- the diagonal of elements from the upper left-hand to the

 lower right-hand corner of the table- that results in the familiar

 series of zeros that diagonally bisects the table. More generally, any

 pc x found in row a and column b will have its inversion, 12 -x(mod-

 12), located in row b and column a.

 The main diagonal is by no means the only diagonal to have

 strucural importance, however. For instance, the 11-element
 diagonal to the immediate right of the main diagonal gives the "INT,"
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 Example 1: Row table for P, <014875936AB2>

 014875936AB2|
 B037648259A1 |
 8904315B267A|
 4580B917A236|
 56910A28B347|
 78B32O4A1569|

 | 347BA8069125|
 |9A154260378B|
 |67A21B390458|

 2 3 6 A 9 7 B 5 8 0 1 4 |
 1 2 5 9 8 6 A 4 7 B 0 3 |

 |AB2653714890 |

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:23:21 UTC
All use subject to https://about.jstor.org/terms



 40 Integral

 the series of adjacent directed pc-intervals of the generating row.

 In this case, the INT of P, <134BA463413>, is found as promised

 on the diagonal to the right of the zeros. At this point, rather than

 continue to examine the meaning of the other diagonals on the table,

 let us instead look at the table from another perspective, one which

 explains, among other things, why the INT of P appears on the row-

 table generated by P.

 As asserted above, the row table is a species of T-matrix

 which, in turn, can be described as a listing of the pc-intervals from

 one ordered set of pcs to another. Now an ordered pc-interval is

 defined from pc x to y as (y-x), taken mod- 12. Thus, the T-matrix E

 lists the pc-intervals from the pcs in set X to those in set Y such that

 the m pc in X and the n pc in Y form an interval that is placed in

 4
 Any ordered set of pitch-classes (pcseg) X sets up a series of (directed) pc-

 intervals called the INT of X, or INT(X). The interval between the nth and (n + l)th

 pc in X is found as the nth interval in INT(X). Thus, if X is <abcd>, then INT(X)

 is <b-a, c-b, d-c>. INTs have a number of properties discussed in detail in Morris,

 Composition

 I(INT(X)); INT(RTnX) = RI(INT(X)); INT(RTnIX) = R(INT(X)). The
 transposition of INT(X), Tn(INT(X)) has no utility in the context of this paper. We

 can also define INTm(X) such that the interval from Xfl to X<n + m> is in
 INTm(X). INT(X) is the same as INTj(X); INT0(X) is a series of zeros; INT2(X)
 provides the succession of intervals between pcs separated by 1 pc in X; and so forth.

 This row property and others, some of which we discuss below, are found in

 Babbitt, "Since Schonberg," Perspectives of New Music 14/2 and 15/1 (double issue,

 1973-74):3-28.

 T-ma trices for unordered sets are also possible. They list the pc-intervals from

 one unordered pcset X to another Y. If X is the same as Y, then the matrix can be

 interpreted as containing the unordered pc-interval (interval-class) within X itself.

 Morris, Composition . . . (pp. 38-9,67-9) defines the ic-content of a pcset X as the
 content of a T-matrix made from X and itself.
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 Integral 41

 the m row and the n column of E. In algebraic form this
 becomes:

 E<m,n> = Yn ~Xnr

 Example 2 shows a small, rectangular T-matrix for the sets

 X = {023} and Y = {24}. For instance, the interval from X1 to YQ

 is Yq-X-. = 2-2 = 0, which is in the intersection of row 1 and column
 0 in the matrix. Note that example 2 aligns the X and Y sets to the

 left and over the matrix, respectively. Thus, the pcs of X and Y

 actually intersect in the matrix to form their pc-intervals. Now let us

 consider what happens when the sets X and Y that generate a T-

 matrix are the same. The matrix gives the pc-intervals from X to

 itself. If X is an ordered set, then the matrix can be interpreted as a

 list of the pc-intervals between the elements of X. (Where X is a

 twelve-tone row, the T-matrix is a row table.) It is important to note

 that if X is not a complete aggregate, then the T-matrix will not list

 all transpositions and inversions of X.

 Example 2: T-matrix for {023} and {24}

 2 4

 0 2 4

 2 0 2

 3 Bl
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 42 Integral

 Returning to the diagonals on the row table of P, we can see

 that the main diagonal of the T-matrix (row table) contains the

 intervals from each element of P to itself: the intervals from Pfl to

 Pn, each of which is 0, for all n. The intervals for adjacent elements

 of P, from Pn to Pn+i> are given by the positions intersecting the

 nth rows and (n + l)th columns (that is, in E<nn + i>)- These
 positions form the diagonal to the right of the main diagonal. This is

 why INT(P) can be read from the matrix. Moreover, the next
 diagonal of E comprises the positions from intersections of row n

 with column n+2, thus giving the interval from P to Pn+o» or tne
 interval between successive pcs in P separated by one intervening pc.

 This 10-pc series <47392A9754> is the INT2(P). The other
 diagonals on the T-matrix are likewise related.

 Considering the row table of P as the intervals from P to a

 copy of P provides another interpretation of the diagonals. Here,

 the diagonals give the relation of P to its copy via "shifting.

 Example 3a shows such correspondences. The main diagonal is the

 relations of intervals of P to P, pc to pc. The diagonal to the right

 gives the intervals from P to P shifted by one pc; the next diagonal

 provides the intervals from P to P shifted by two pcs; and so on.

 Thus the diagonals give the vertical intervals between canonic
 presentations of P.

 For further discussion see Babbitt, "Since Schonberg," and Morris Composition . . .

 (pp.40, 107-9).

 The use of T-ma trices to deal with canonic relations between pcsegs is a subset of

 the theory of rotational arrays as found in Morris, "Generalizing Rotational Arrays,"

 Journal of Music Theory 32/1 (1988):75-132. This article cites the important earlier

 articles on such arrays, such as John Rogers, "Toward a System of Rotational

 Arrays," Proceedings of the American Society of American Composers 2 (1967):61-122.
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 Example 3: Interpretations of Diagonals of P

 Ex. 3a:

 P: 014875936AB2

 P: 014875936AB2

 intervals: 000000000000

 P: 014875936AB2

 P: 014875936AB2

 intervals: 134BA463413

 P: 014875936AB2

 P: 014875936AB2

 intervals: 47392A9754

 Ex. 3b:

 P: 014875936AB2

 RP: 2BA639578410

 intervals: A2624848A6A2

 P: 014875936AB2

 RP: 2BA639578410

 intervals: B5A120AB271

 P: 014875936AB2

 RP: 2BA639578410

 intervals: 299B66133A
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 44 Integral

 But what of the diagonals that are perpendicular to the

 main diagonal? The basic perpendicular diagonal, called the
 "secondary diagonal," is the sole 12-element span from the lower left

 to the upper right of the matrix. For our P it is <A2624848A6A2>.

 The secondary diagonal gives the intervals from Pn to PB-n(modl2)
 the intervals formed when P is aligned with its retrograde. And like

 the situation above, the next diagonal to the right gives the intervals

 from Pg to Pn+ 1, or from the retrograde of P to P shifted to the
 left by one pc; and so on for the other diagonals. Example 3b shows

 Q
 such alignments.

 It should also be understood that each of the diagonals

 parallel to the secondary diagonal are Rl-symmetric due to the I

 symmetry of a T-matrix (row table) generated from one set.
 Another way to understand the symmetry follows from the
 alignment of an ordered set and its retrograde. Such an alignment

 produces a series of vertical intervals from pc a in P to pc b in RP

 followed by the retrograde of the inversion of those intervals, namely

 the vertical intervals from pc b in P to pc a in RP. The same

 symmetry obliges rows that are RT^ invariant to display 6s on the
 secondary diagonal of their rows.

 Segmental Inclusion and T-Matrices

 In twelve-tone analysis or composition it is often very useful

 to know if a given pcseg is embedded in a row and/or its transforms.

 This means that the pc-intervals between a pcseg and its retrograde can generate

 rotational arrays analogous to the "Stravinskian" type based on the I NTs of a pcseg.

 Each T-matrix diagonal parallel to the secondary diagonal (wrapping around the

 matrix) will be a column in the rotational array.
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 Integral 45

 (An embedded pcseg is included in some row in order, but not

 necessarily adjacently.) The pcseg may consist of certain pcs of the

 row that are highlighted to form a figure/ground presentation of the

 row (i.e., the segment is figure, the rest of the row is ground, or vice

 versa). Of course, if we wish to find a specific segment embedded in

 a row, we simply look. However, if we want to see if a segment Z is

 embedded in any row in the row-class of P, looking at each and

 every row in the row table is tedious and time-consuming.

 Another, more sophisticated method would be to generate the T-

 and I-matrices for the segments Z and P. Although this method is

 valuable and highly general, producing the matrices and inspecting

 them for certain patterns of identical integers requires pencil and

 paper (or an eidetic memory). But before providing a much simpler

 hand-algorithm performable on the row-table itself, let us consider

 example 4. The left side of the example shows the six distinct ways

 the pcseg Z <0152> is embedded in members of the row-class of P.

 The right half shows the isomorphic situation, the cases of distinct

 serial transforms of Z embedded in the row P. On the left, Z is

 included in GP (where G is a serial operation); on the right, HZ is

 embedded in P (where H is the inverse of G).

 Our algorithm generates the right half of example 4,
 indicating which transforms of Z, if any, are embedded in P. Only

 the INT of Z and the row table of P are needed to perform it. In

 general, we shall be attempting to find a zigzag sequence through the

 One can also use an "order number table" as shown in Morris, Composition . . .,

 p.l 15-16.

 "Serial transforms" or "serial operators" are members of the set of Tn, I, R,

 and/or r (rotation) operators commonly used in serial and twelve-tone theory.
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 Example 4: Embeddings of pcset Z in row P

 P: 014875936AB2 P: 014875936AB2

 Z: 01 5 2 Z: 01 5 2

 Tg: 8904315B267A P: 014875936AB2
 Z: 0 15 2 T4Z: 4 59 6

 RTA: 0984173562BA P: 014875936AB2
 Z: 0 15 2 RT2Z: 4 7 3 2

 T4I: 43089B71A652 P: 014875936AB2

 Z: 0 1 52 T8IZ: 87 36

 RTAIP: 8B047153269A P: 014875936AB2
 Z: 0 15 2 RTAIZ: 8 59 A

 RTBIP: 9015826437AB P: 014875936AB2
 Z: 015 2 RTBIZ: 9 6AB
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 Example 5:

 0 bcdefghijkl

 -b 0 .... x

 ■c 0

 •d 0

 -e 0

 -f 0 .

 ■g 0.x

 ■h 0 .

 -i Ox

 ■j 0

 -k 0

 ■I 0
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 48 Integral

 table and the positions on the main diagonal. Example 5 shows the

 form of such a sequence in an "abstract" row table.

 All entries in the row table of example 5 are blanked out

 except: (1) the top row which contains the row P, denoted by the

 string <Obcdefghijkl>; (2) the elements of IP in the zeroth column

 <0 -b -c -d -e ... -k -1>; (3) the main diagonal of zeros; and (4) the

 sequence itself, consisting of the zeros of the main diagonal
 alternating with the non-zero entries given by xs. The dots merely

 indicate entries between those on the sequence. The matrix

 positions traversed by the sequence in example 5 are 0 = E < i i > x

 = E<1,6>, 0=E<6,6>, x = E<6,8>, ° = E<8,8>, x = E<8,9>,
 O = E<^^> Obviously, the algorithm depends on the values of
 the xs, the non-zero entries in the sequence. These are the
 successive intervals in the INT of Z. As a result, if there is a

 sequence on the table using all the values of INT(Z), then Z or a

 transposition of Z is embedded in P (or Z is embedded in P or a

 transposition of P). A nice feature of the algorithm is that one can

 read the transform of Z from the table by taking those entries in the

 top row of the table that are over-in the same column as--the zeros

 of the sequence. (Thus, in example 5, <bgij> would be a
 transposition of Z).

 Let us use the algorithm to show that, for the Z and P of

 example 4, Z and T^Z are included in P. The relevant sequences in
 the row table of P are given in example 6a, each underlined in its

 own copy of the row table. The INT of Z is < 149 >.

 In more general cases, where pcseg Z or P has pc duplication, zeros will appear

 off the main diagonal.
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 Integral 49

 In the left table of example 6a, we begin with the 0 in

 E<0 0> and ^ the first element of INT(Z), !> in e<q 1> Then>
 after dropping down to the main diagonal to E< ^ ^ > , we look to the

 right on row 1 and find the next value of INT(Z), 4, in E< ^ ^>. (If
 we were unable to find a 4 on row 1, there would be no transposition

 of Z in P that began with the first pcs of P.) We now move to

 E<5 5> and again look to the right on row 5 for the last element of
 INT(Z), which is found in the last column of the table. Dropping

 down to the main diagonal leaves us in E<gg> Looking on the
 top row in the columns that have zeros from the sequence gives us

 the positions E<qQ>) E<q ^ E<0>5>) and E^^ which holds
 the Tq of Z (i.e., Z itself), <0152>. A similar sequential
 construction is shown in the table on the right side of example 6a.

 We shall start with row 1 of the table since we have already found an

 embedding of Z starting with row 0. There the first element of

 INT(Z), 1, is found on row 1 of the table, but unfortunately in the

 last column, so a sequence cannot be extended further. Looking on

 row 2, we find the requisite 1 in E<25> This begins a sequence
 that proves to be completed. The main diagonal elements are

 E<2,2>, E<5,5>, E<6,6>, and E<8,6>' so E<0,2>, E<0^>,
 E < 0 6 > and E < 0 8 > k°'d a transPosfri°n °f z> this time T^Z.

 When we wish to find other transforms besides

 transpositions of Z in P, we simply search for the INT of RZ (for

 RTnZ in P), INT(IZ) (for TflIZ in P), and/or INT(RIZ) (for
 RTnIZ in P).14 Examples 6b and 6c show sequences for INTs of

 We continue to begin with the zeros on successive rows of the matrix, but no

 more complete sequences are found.
 14

 See previous note 4.
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 Example 6a:

 TQ2: 0 1 5 2 V: 4 5 9 6
 014875936AB2 014875936AB2
 8037648259A1 B037648259A1
 8904315B267A 890431SB267A
 4580B917A236 4580B917A236
 56910A28B347 56910A28B347
 78B3204A1569 78B3204A1569
 347BA8069125 347BA8069125
 9A1542603788 9A154260378B
 67A21B390458 67A218390458

 236A97B58014 236A97B5801c
 125986A47B03 125986A47B03
 AB2653714890 AB2653714890

 Example 6b:

 RT22: 4 7 3 2

 014875936AB2

 B037648259A1

 8904315B267A

 4580B917A236

 56910A28B347

 78B3204A1569

 347BA80691 25

 9A154260378B

 67A21B390458

 236A97B58014

 125986A47B03

 AB2653714890

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:23:21 UTC
All use subject to https://about.jstor.org/terms



 Example 6c:

 T4IZ: 4 3 B 2

 O14875936A0 2

 B037648259A1

 8904315B267A

 4580B917A236

 56910A28B347

 78B3204A1569

 347BA8069125

 9A154260378B

 67A21B390458

 236A97B58014

 125986A47B03

 AB2653714890

 T8IZ: 8 7 3 6

 014875936AB2

 B037648259A1

 8904315B267A

 4580B917A236

 56910A28B347

 78B3204A1569

 347BA8069125

 9A154260378B

 67A21B390458

 236A97B58014

 125986A47B03

 AB2653714890
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 52 Integral

 RZ and IZ. (These INTs are <38B> and <B83>, respectively.)
 The reader may want to construct the sequences in the table (in

 example 1) that locate transpositions of RIZ in P; from example 4,

 we know there are two different embeddings.

 The principle behind the algorithm derives from the way the
 intervals between elements of P are ordered in the table. If the n

 element of INT(Z) occurs in the table in position E . ^ ^ then that
 interval occurs both between Z and Z . + and between P and P^.

 The next interval in INT(Z) is the (n+1) , which must span from

 PK to P_, where c > b. We can determine whether this is the case by
 • 15

 seeing if the interval is found in any position • E<j) c> where c > b.
 If so, we can continue with the next interval in INT(Z); if not, only a

 portion of TflZ is embedded in P.
 The algorithm is not limited to twelve-tone rows. We can

 look for transpositions of any Z in a pcseg S of any cardinality with

 or without pc duplications. We simply construct the T-matrix for S

 and perform the algorithm. A computer program implementing the

 algorithm can be constructed for Z and S or arbitrary length. To

 The use of position E<bb> between E<ab> and E<bc> is actually
 superfluous. When performing the algorithm by hand, the "extra position" helps

 locate row b quickly on the matrix as well as providing a vivid sequence of right

 triangles each of whose hypotenuse lies on the main diagonal.

 Our algorithm can also be adapted to construct a pcseg S that embeds as many

 serial transforms of a specified pcseg Z as possible. Even so, a more direct
 algorithm is found on pages 140-45 of Andrew Mead, "Some Implications of the

 Pitch Class/Order Number Isomorphism Inherent in the Twelve-Tone System, Part

 One," Perspectives of New Music 26/2 (1988):96-163.

 Like the general analytic use of invariance matrices proposed in Alphonce, The

 Invariance Matrix, our algorithm can look for all occurrences of any pcseg Z (and its

 transpositions) embedded in any series of pes S from any piece of music. The
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 Integral 53

 this end, Appendix A presents a more formal presentation of the

 algorithm in "pseudo-code."

 T-matrices and Pitch-Class Polyphony

 The discussion of example 3 indicated that the diagonals of

 a T-matrix generated by a single pcseg S reveal that vertical pc-

 intervals that are found between the voices of a simple two-part
 canon based on S. We can extend the use of T-matrices to

 understand and control more general and flexible polyphonic
 relations between any two pcsegs S and S\ S' might be a serial

 transform of S, producing a canon by transposition, inversion and/or

 retrograde with S; or S' might be completely unrelated to S, merely

 producing polyphony. In either case, the T-matrix based on S and S*

 not only models the intervals between S and S' shifted in lockstep by

 n pcs, but for all cases of their rhythmic alignment.

 To illustrate this considerable feature of the T-matrix, we

 will examine a few measures from the first movement of Bart6k's

 Music for Strings, Percussion, and Celesta. The passage is taken from

 the beginning of the last section of the movement, where Bartbk's

 famous four-phrase fugue theme is presented with itself in inversion.

 advantage of our approach over that of the general invariance matrix method is that,

 in the latter, a new set of matrices must be generated for each new Z, even if S

 remains the same. (In addition, we need only generate a little less than half the

 entire matrix since our algorithm only inspects positions to the right of the main

 diagonal.) Moreover, the scanning algorithm for detecting patterns in the general

 method is a good deal more complex than in our algorithm. On the other hand, the

 general method automatically produces important additional information about the
 transformations of Z vis-a-vis S.
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 54 Integral

 Example 7 extracts the pair of inversionally related voices from the

 passage, with the original theme in the lower voice at the same pitch

 level as it was presented alone at the beginning of the piece. The

 lower voice displays the same sequence of pitches and pcs as its

 original statement. Only the rhythm has been altered: each of the

 eighth rests originally separating its four phrases has been omitted,

 some of the notes of a quarter-note duration have been shortened to

 eighths, and an eighth rest has been added after the C-natural in the

 third phrase. As a result, the rhythmic profile of the opening has
 been flattened out. The relation between the two voices is not one-

 to-one; rather there are slight differences in length between
 inversionally corresponding pcs. These occur more frequently as the

 passage continues, starting as deviations at the ends of the first two

 phrases, then involving the inserted rest (mentioned above) in the

 third phrase, and finally affecting almost all of the last phrase. The

 effect is that of the emergence of polyphony out of homorhythm

 analogous to two slightly differing frequencies that start in sync but

 gradually get out of phase.

 Example 7 also lists the pc-intervals (from low to high)

 between the two voices. If the two voices were exactly inversionally

 aligned throughout, we would expect the resultant intervals to be all

 even (because the axis of inversion is a single pc, the index of

 inversion must be even). The rhythmic displacement that occurs

 brings in intervals of odd size, such as the 3 in the second phrase.

 Aside from offering some effective variety, the displacements have a

 motivic role. As an example, the wedge of expanding intervals in the

 last phrases emphasizes the procedures of expansion/contraction

 that mark so many aspects of the entire piece. Displacements via

 rests in the third phrase produce the intervals of 5 and 7 over the C-
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 Example 7.

 PCs:O B 8 9 A / 0 ^

 ^

 Ints: 0 A46760 A420366A4A

 PCs: 6 7 9 8 A / B 6 7 8 A 9 B

 Ints: 026 (5) 48 (7) 6 0 12346868 A
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 56 Integral

 natural, and tend to suggest a mild cadence to C. This is reminiscent

 of the role of C in the movement as the mid-way point between the

 "poles" of A and E-flat, and of the minor third relation between the

 first and third phrases; the latter is derived via T\ from the former.

 In order to study these displacements in the Bartok
 example, T-matrices are generated for each phrase with A-natural as

 pc 0. The matrices display all of the pc-intervals from the lower

 voice to the higher and are therefore built out of two pcsegs. S is the

 lower voice, S' (equivalent to TqIS) is the higher voice. Example 8
 gives the four T-matrices. In each case, S is the vertical segment and

 S' is the horizontal pcseg.

 If the alignment of pcs of S and S' are one to one, the

 vertical intervals in the polyphony would be found in the matrix's

 main diagonal. If S gets ahead of S' by one pc, then the interval in

 question is found right below those in the main diagonal. Likewise if

 S' gets ahead of S, the resulting intervals are found to the right of the

 main diagonal. Thus, moves on the matrix imply alignments
 between S and S': if one moves adjacently on the matrix either down

 or to the right or both, the resultant intervals that are traversed are

 the same as those made by holding or moving through the pcs of

 either or both of the voices S and S\ More precisely, letting Sa

 simultaneously sound with S'b, the interval from the former to the

 latter is found in E<a b> There are three possible adjacent moves
 down and/or to the right on the T-matrix.

 (1) Moving from E<ab> to E<ab+l>> the interval in
 E<ab+1> ls tnat Pr°duced by sustaining Sa and moving to the next

 pcofS',S'b + 1
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 Example 8: T-matrices for phrases from Bela Bart6k's
 Music for Strings, Percussion, and Celesta

 0B89A 0B8769AB

 0 | 0 B 8 9 A 0 | 0B8769AB
 1 | BA789 1 | BA76589A
 4 | 87456 4 | 87432567
 3 | 98567 5 | 76321456

 6 | 65210345
 phrase 1 3 | 98543678

 2 | A9654789
 1 | BA76589A

 phrase 2

 856798A 9678A9B

 4 | 4 1 2 3 5 4 6 3 | 6345768
 7 | 1 A B 0 2 1 3 6 | 3012435
 6 | 2 B 0 1 3 2 4 5 | 4 1 2 3 5 4 6
 5 | 3 0 1 2 4 3 5 4 | 5234657
 3 | 5234657 2 | 7456879
 4 | 4 1 2 3 5 4 6 3 | 6345768
 2 | 6345768 1 | 856798A

 phrase 3 phrase 4
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 (2) Moving from E<ab> to E<a+ib>> the interval in
 ^<a+lb> ^ l^at Pr°duced ty sustaining S'b and moving to the
 next pcinS, Sa + 1

 (3) And moving from E<ab> to E<a + i)b + l>» the
 interval mE<a + ^u + ^> *s ^at Pr°duced by simultaneously moving

 to the next pcs in both S and S\ that is, to Sa+ ^ and S^ + ^
 Returning to the T-matrix of phrase 1 given in example 8,

 note that the underlined positions are the intervals between the

 higher and lower voices of phrase 1 in example 7. Since the first four

 attacks are one-to-one correspondences of S' and S, we remain on

 the main diagonal. With the move of F-sharp to G in S while S'

 sustains C, we move to the right on the matrix, reflecting the interval

 of 7 between C and G. Then S' sustains while S moves to B-natural;

 this is shown on the matrix by moving down from E<3 3> to
 ^<3 4> * $mce each of the voices has been sustained once while the
 other has moved to its next pc, the voices regain their inversional

 correspondence. Similarly, on the matrix we have moved back on to

 the main diagonal.

 An inspection of the matrices of the other three phrases

 shows that the alignments remain directly inversional most of the

 time, save for the last phrase, which follows a zigzag path typical of a

 suspension-like texture. Of course, other paths and, therefore, other

 alignments may be traced. Example 9 gives three of these other,

 more deviant paths through the matrix of phrase 1, together with

 their pc interpretations and realizations on the staff.

 An interesting theoretical question is suggested by the

 previous discussions, namely, how many different alignments are
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 Example 9.

 .0..B.8..9 A

 1BA789 fl ^ t>J ' jrlr - ^ « J -ft 487456 fo ' * * I
 398567 ar ^ ^rtr *r r 2A967S ^ I LJ I I
 S* 0B888899A
 S 000143 322
 int 0B8745678

 ,.9 B 8 ? A
 0 0 B 8 9A ,

 1fiA789 fl i tfJ""] jj"!
 482456 & '! . * I
 398567 y r^r tr^i^jr . ir P 2 A 9 6 7 8 M |_|^ ir P
 S' 0 0 B 8 9 A

 S 0 143332
 inl 0 B 7 5 6 7

 .0 J3 8 9 A 3 o'o'b Wa ___. 3 3
 1BA789 fl ^ J- hJ J ' uj J 482456 fe , ' 1
 3985^Z J ^ - Hr tt^lTTpr , 7
 2 A 9 6 7 8 Jt- tJ LI

 S' 00BB889A
 S 0 0 114322

 int 0 B A 7 5 6 7
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 possible between two pcsegs S and S'? The answer is given by the
 -JO

 following formula:

 #alignments = SUM (g - n)!
 n = 0,h

 (e-n)!(f-n)!(n!)

 Where e = #S - 1; f = #S' - 1; g = e + f, and h = e or f,
 whichever is smaller.

 For pcsegs of cardinalities 3 and 4, e = 3, f = 2, g = 5 and h

 = f = 2. Inserting these values in the formula shows that there are

 25 distinct ways to align a segment of 3 pcs with one of 4. The

 following verifies this result; example 10 gives all 25 alignments

 grouped according to the number of intervals in each.

 n = 0 (5-0)! 5!

 (3-0)!(2-0)!(0)! 3!2!0!

 n=l (5-1)! 4!

 (3-l)!(2-l)!(l)! 2!2!1!

 n = 2 (5-2)! 3!

 (3-2)](2-2)K*2)! " iT6i2!

 grand sum: 25

 A proof of the formula shows that the possible alignments are isomorphic to the

 enumeration of possible distinct permutations of the correct number of any of the

 three moves (step adjacently right, step adjacently down, step adjacently right and

 down) through a particular T-matrix, from its upper left-hand corner to its lower

 right-hand corner.
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 Example 10: Possible alignments of segments S and S'

 S = <abc> S'= <deg>

 six intervals:

 abcccc aabccc aaabcc

 dddefg deeefg deffgg

 abbccc aabbcc aaaabc

 ddeefg deeffg defggg

 abbbcc aabbbc

 ddeffg deefgg

 abbbbc aaabcc

 ddefgg defffg

 five intervals:

 abccc abbcc abbbc abccc aabbc aabbc

 deefg deffg defgg ddefg defgg deffg

 aaabc aabcc abbcc aaabc aabbc abbbc

 defgg deefg ddefg deffg deefg ddefg

 four intervals:

 abcc abbe aabc

 defg defg defg
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 The variable n, dependent on h, determines how many

 intervals are formed by the alignment of the pcsegs. This means that

 each component of the sum as given above produces the number of

 distinct alignments of an equal number of intervals. When n = 0,

 the number of intervals is maximal and equal to the sum of the

 cardinalities of the two pcsegs . When n is maximal, equal to h, the

 length of the smaller of the two pcsegs minus 1, the number of

 intervals is minimal, equal to h plus the difference between e and f

 (or between the two lengths of the two pcsegs) plus 1. With the

 previous values, when n = 0, the number of intervals is 6 and the

 number of alignments is 10; when n = 1, there are 5 intervals in 12

 different alignments; when n is maximally 2, there are 4 intervals in 3

 different alignments.

 A final application of T-matrices to pc polyphony is directly

 related to traditional counterpoint. Taking the diatonic pc
 sequences <DCFFEDGFF> and its transposition a perfect
 fifth higher <AGCCBADCC>,wecan compose a T-matrix
 whose entries are the diatonic (mod-7) intervals between the first

 and second sequences. The result is in example 11. Looking at
 diagonal paths of intervals, there are two that do not violate
 traditional dissonance treatment: < 3267336 > and < 66656 >. These

 are underlined in example lla. Converting the alignments
 determined by the sequences gives two musical examples, examples

 lib and lie. The intervals now are bass figures. The first example

 describes two suspensions with a change of bass; the second example

 shows a simple and legal sequence of fifths and sixths. The T-

 19
 These intervals are "adjusted" to conform to tradition so that the prime is not

 interval 0 but 1, etc.
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 Example lla.

 2 5 5 4

 I 5 5 4
 Ifi65
 1 "7 7 A

 Example UK

 Example lie.

 Example 12.
 C A G C A G

 E 643 E £43
 F522 F 5]2
 E641 E642

 PM^F i i1 iLI i '
 6 3 3 6 3 2 3
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 matrix shows what might not be apparent to the student who

 composed either example lib or lie, that there are two ways to

 align canonically the same two voices. Example 12 shows how a

 simple diagonal alignment on the left T-matrix can be elaborated as

 shown on the right matrix so that a series of consonances is
 ornamented by a 4-3 suspension. These last two examples show that

 the T-matrix models counterpoint in ways that make simple
 (computer-assisted) searches of the adjunct to more general
 algorithms and heuristics that attempt to automate the generation of

 legitimate traditional counterpoint.
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 Appendix A: Algorithm to Search for Transpositions of
 a Pcseg in another Pcseg.

 Definitions and Initialization:

 S = segment to search within
 Z = segment to search for
 z = #Z-1

 s = #S - 1

 e = #S - #Z = s - z

 zint = INT(Z)
 F = the final segment, a transposition of Z
 R = row

 C = column

 RR = opening row
 E = T-matrixofS

 N = order position of zint
 M = order position of F

 The Algorithm

 1. RR = -1

 2. R = RR + 1

 IFRR>e

 THEN

 STOP
 ENDIF

 N = 0

 M = 1

 RR = R

 Fo = SRR

 C = R
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 3. IF C> s
 THEN

 GOTO 2.
 ENDIF

 4IFE<R,O=zintN '
 THEN '

 FM = Sc
 M = M + 1

 IFM>e
 THEN

 F = TnZ and F is included in S
 COMMENT: N = Spp-Sn RR °
 GOTO 2 Spp-Sn RR °

 ELSE

 N = N+ 1

 R = C

 GOTO 3
 ENDIF

 ENDIF

 5. C = C + 1
 IF OS
 THEN

 GOTO 2.
 ENDIF

 GOTO 4.
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