
 Pascal Programming for Music Research
 (Chicago: University of Chicago Press, 1990)

 by Alexander R. Brinkman

 Reviewed by James L. Snell

 Occasionally a book appears which fills a major and

 long-standing gap in the literature, and which documents a

 methodology for an entire area of study comprehensively for the

 first time. This is such a book. The technical methodology of

 computer-aided research in music theory and musicology, from the

 pioneers (e.g., Rothgeb, LaRue, Jackson, Forte, and Kassler1)

 through the present, has been anything but standardized. Almost

 every researcher has had to invent, and in most cases reinvent,

 appropriate internal computer representations for even such basic

 items such as pitches, durations, and intervals, not to mention part

 'John Rothgeb, Harmonizing the Unfigured Bass: A Computational Study
 (Ph.D. dissertation, Yale University, 1968); Jan LaRue, "Two Problems in
 Musical Analysis: The Computer Lends a Hand," in Computers in Humanistic
 Research: Readings and Perspectives , ed. E.A. Bowles (Englewood Cliffs,
 New Jersey: Prentice-Hall, 1967): 194-203; R.H. Jackson, "Harmonic
 Analysis with Computer: A Progress Report," Institute for Computer Research
 in the Humanities Newsletter I (1966): 3-4; Allen Forte, "The Domain and
 Relations of Set-Complex Theory," Journal of Music Theory 9/1 (1965):
 173-180; Michael Kassler, "A Sketch of the Use of Formalized Languages for
 the Assertion of Music," Perspectives of New Music 1/2 (1963): 83-94.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms



 142 Integral

 synchrony or complete compositions. The reasons for this duplica-

 tion of effort were partly (1) that various modifications of the basic

 techniques had to be developed for different kinds of analysis,

 necessitating some reinvention, but more importantly (2) that

 technical methodologies were usually not described in the literature

 in sufficient detail for re-use. Brinkman's book does an enormous

 service to the computer-aided music research community by

 presenting carefully refined techniques for a wide variety of

 applications, exposited clearly and in complete detail.

 But the book's coverage of research techniques, while its

 most valuable contribution, is only one of its aspects. It also

 incorporates numerous features that make it an exemplary textbook,

 suitable for graduate students or advanced and strongly motivated

 undergraduates. These features include: a chapter on concepts of

 computers; four chapters introducing the Pascal programming

 language; a section on general programming methodology; nine

 chapters containing rigorous treatments of the more advanced

 features of Pascal, using examples relevant to music analysis;

 numerous references and exercises at the ends of chapters; two

 appendices useful for the beginning Pascal programmer; an

 extensive glossary; and two indexes (one to computer techniques,

 one general).

 Yet a third valuable aspect of this mammoth book is its

 inclusion, in three appendices, of a sizable collection of ready-

 to-use software: an interpreter for a large subset of the DARMS

 score-encoding language; a library of general utility programs for

 music analysis; and a group of programs for score processing, i.e.,

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms



 Integral 143

 manipulating the data structure generated by the DARMS

 interpreter. Researchers wishing to use these programs can transfer

 them to a computer using a text scanner (typing them would be

 excessively time consuming), or obtain them on a diskette by

 contacting the author at the Eastman School of Music.2

 The book is organized as follows:

 PART I: GETTING STARTED

 1 . Introduction

 2. A Tutorial Introduction to Pascal

 3. Pascal Basics and Simple Types
 4. Input and Output
 5. Control Statements

 6. Encoding Music
 7. Program Design
 8. Eof, Eoln, and Input^
 9. Functions and Procedures

 PART II: STRUCTURED TYPES

 10. The Array and List Processing
 1 1 . Other Uses for the Array
 12. Set Types
 13. Record Types
 14. File Types
 15. Recursive Algorithms
 16. Linked Data Structures

 PART III: APPLICATIONS

 17. Prime- Form Algorithms
 18. A Matrix-Searching Program
 19. Spelling Pitch Structures
 20. Score Processing

 2Personal communication.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms



 144 Integral

 APPENDICES

 A. The ASCII Character Set

 B. Type Compatibility and Operator Precedence
 C. A DARMS Interpreter
 D. A Program Library
 E. Score Programs from Chapter 20

 Glossary
 Index to Programs, Subprograms, and Algorithms
 General Index

 Research Techniques

 As Brinkman notes in the Preface:

 . . . much of the important work in music theory,
 especially the analysis of twentieth-century music,
 has relied heavily on techniques for modeling
 music and testing theories with the aid of the
 computer, (p. xv)

 Besides atonal research, studies in tonal music theory and in

 musicology have also increasingly benefitted from the computer as

 a tool, both for its "low-level" capacities to count, sort, format,

 compute statistics, etc., and for "higher-level" tasks such as parsing

 and generating compositions according to formal grammars. But

 despite the benefits afforded by using computers in music research,

 their use has been quite limited. In part this has been due to

 ordinary human fear or misunderstanding of new technology. But

 even among music researchers who would like to begin using

 computers, there have been at least three major impediments: (1)

 lack of programming knowledge by some; (2) lack of refined

 programming techniques and ready-made software usable by

 non-expert programmers; (3) lack of computer-encoded scores

 available to researchers "off-the-shelf." Brinkman's book certainly

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms



 Integral 145

 addresses issue (1), in that it is uniquely suitable for self-instruction

 (as well as for classroom instruction- see below) by musicians, who

 otherwise would be forced to study from conventional computer

 science texts filled with examples having no relevance to music.

 But the book's greatest contribution for researchers is in the

 area of item (2): programming techniques and finished programs.

 Brinkman begins his serious treatment of music-related techniques

 in Chapter 6, presenting six different methods for representing

 pitch, ranging from simple pitch class (pc) using integers 0-11, to

 continuous binomial representation (cbr) which encodes octave,

 pitch class, and diatonic spelling; he also includes a complete list of

 operations on these pitch representations (transposition, inversion,

 interval calculation, etc.). Similarly, for representing time intervals

 he presents reciprocal duration code (rdc), which he later

 generalizes to rational duration representation (rdr), along with the

 associated operations. In every case it is clear that Brinkman has

 thoroughly thought out his choices of representation to achieve

 optimal flexibility and ease of use.

 Finally in this chapter, he discusses encoding of other

 musical features (bar lines, articulation, part indication, etc.) as he

 introduces two widely used score encoding languages: DARMS

 (Digital Alternate Representation of Musical Scores), and the much

 simpler language SCORE. It is important to note that the book is

 not primarily concerned with these external (i.e., character-based)

 score languages; rather, its focus is on building and processing the

 internal data structures needed for music analysis, which are

 independent of the external form in which the music was encoded.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms



 1 46 Integral

 In Part II of the book, interleaved with explanations of

 general-purpose data structures and algorithms (arrays, records,

 sets, lists, etc.), Brinkman develops a number of useful musical

 applications, building on the pitch and duration representations

 given earlier: processing twelve-tone matrices, pitch-class set

 operations, processing grouplet durations, computing permutations

 and combinations of pitch-classes, melodic contour counting, and

 thematic indexing. These applications are carefully ordered in

 increasing difficulty, and in each case, the musical application is

 appropriately matched with the data structure being discussed.

 The four chapters of Part III present more advanced

 music-processing applications, while continuing to add to the

 general repertoire of data structures and algorithms (binary search

 trees, bitmaps, etc.). Chapter 17 covers algorithms for four

 definitions of normal order and prime form (those of Starr, Forte,

 Alphonce, and Rahn). Brinkman carefully analyzes the algorithms

 in terms of both musical utility and computational elegance and time

 and space efficiency, and presents complete programs in Pascal,

 painstakingly explained and commented. Chapter 18 deals with the

 problem of searching a matrix for specified pitch-class collections.

 As is typical throughout the book, Brinkman provides not merely

 a program that does the job, but one that is graphically effective

 (using reverse video to highlight matches), flexible (the user can

 specify absolute or 0-based display of the matrix), and user-friendly

 (it presents a convenient menu of commands for various

 operations). Brinkman has refined his search and display

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms



 Integral 147

 algorithms for optimal efficiency, and carefully explains and

 motivates their designs.

 Chapter 19 presents an instructional program that provides

 drill and practice in pitch spelling, while developing algorithms for

 generating random numbers and manipulating pitch collections.

 The program provides an exhaustive repertoire of exercises: forty-

 one categories of practice, organized in six groups (intervals,

 scales, scale steps, chord spelling, diatonic chords, and altered

 chords), 283 distinct questions, and over 87,000 question variations.

 Anyone concerned with the pedagogy of music theory will be

 impressed by the features of this program. As usual, Brinkman

 explains every part of the program thoroughly, for those who wish

 to modify or expand it.

 Chapter 20, the final chapter, is Brinkman 's tour-de-force:

 a versatile software system for processing musical scores. He first

 gives a detailed explanation of his DARMS interpreter, a program

 that translates DARMS-encoded scores into a data structure suitable

 for analysis. He then presents programs illustrating the use of this

 data structure for various purposes, including matching melodic

 contours, finding arbitrary pitch sets, and performing simple

 harmonic analysis. Here we see, for the first time in a

 widely-available and practical form, the realization of an idea that

 goes at least as far back as the invention of DARMS by Stefan

 Bauer-Mengelberg in the 1960s:3 software that accepts musical

 3Stefan Bauer-Mengelberg, "The Ford-Columbia Input Language," in
 Musicology and the Computer, ed. Barry S. Brook (New York: City University
 of New York Press, 1970): 48-52; see also Raymond F. Erickson, DARMS:
 A Reference Manual (New York: DARMS Project, Dept. of Music, Queens
 College, CUNY, 1976).

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms



 148 Integral

 scores encoded in virtually total detail, and performs useful analysis

 of arbitrary complexity automatically.4

 This culminating chapter can be taken as a cue to those

 music theorists who have been waiting for these foundational

 programs to become available in order to perform analyses of a

 type and scale that are simply unrealistic to do by hand. Make no

 mistake: this is not slick, packaged software for use by the

 computer-illiterate- its use requires programming, but at a level that

 should be within reach of many music theorists. But these

 programs are rigorously thought through and skilfully implemented;

 they are splendidly explained and documented, allowing relatively

 easy adaptation to any project; and they are truly portable in the

 form of Pascal source code (one of Brinkman's chief reasons for

 choosing Pascal) to virtually any computer. For these reasons, they

 are likely to become de facto standards over the coming years.

 One major impediment still remains before very large-scale,

 computer-based music analysis projects become practical: lack of

 availability of many computer-encoded scores (item (3) above).

 Part of the problem is technical: encoding scores into DARMS

 manually is slow, tedious, and error-prone, and the technology

 necessary for automatic encoding using optical scanning has yet to

 be perfected, although there has recently been progress in this

 4Designs of two related software systems, one to translate from all the
 allowed variants of DARMS code into a canonical form, the other to generate
 a completely general internal score representation, are described in: Bruce A.
 McLean, The Representation of Musical Scores as Data for Applications in
 Musical Computing (Ph.D. dissertation, SUNY-Binghamton, 1988).

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms



 Integral 149

 area.5 But as much of the problem is organizational: the number

 of researchers who could use computer-encoded scores has not yet

 reached "critical mass," and there is thus no clearinghouse for even

 those few scores that have been encoded. One hopes that

 Brinkman's book will stimulate computer-based score analysis

 enough that the research community will organize DARMS sources,

 standards and methods for quality control, etc., which will in turn

 stimulate further encoding, and eventually "explode" into a

 commonplace form of research.

 Pedagogy

 Brinkman's book is exemplary in its thoroughness and

 clarity, as much for computing topics as for musical ones. Indeed,

 this book contains as excellent a set of explanations for teaching

 basic computer science- machine concepts, language constructs

 (types, looping, etc.), data structures (from arrays through linked

 structures and hashing), algorithms (sorting, searching, etc.), and

 single-author programming methodology (top-down design,

 debugging, etc.)- as any beginning computer science textbook on

 the market. The explanation of linked data structures (pp. 548ff.)

 is particularly fine. Brinkman's treatment of the Pascal

 programming language itself is more thorough than that in many

 computer science texts, including such esoteric features as internal

 files and parameter passing of procedures and functions. Another

 refreshing aspect, absent from many computer science texts, is

 5See David S. Prerau, "DO-RE-MI: A Program that Recognizes Music
 Notation," Computers and the Humanities 9 (1975): 25-29.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms



 150 Integral

 Brinkman's frequent mention of common programming pitfalls, i.e. ,

 what possibilities are mcorrect, and why (e.g., pp. 233ff.). Finally,

 no student could wish for more understandable programs: they are

 virtually all, from small examples through large applications,

 properly structured, optimally efficient, beautifully formatted, and

 clearly commented.

 The careful ordering of topics results in a progression of

 concepts and techniques that build smoothly throughout the book.

 In general, exercises are precisely worded, and provide a good

 range of levels of difficulty, particularly at the " difficult " level:

 despite the myriad program listings provided, plenty of possible

 enhancements and variations remain for use as student projects.

 The references and selected readings at the end of each chapter are

 appropriately complete and helpfully annotated. (A minor

 complaint is that the references are not also collected into one place

 at the end of the book, or at least indexed together by author.)

 One feature of the book that makes it particularly suitable

 for self-teaching is the glossary. Over twenty-four pages, Brinkman

 has produced a remarkably complete and well cross-referenced list

 of terminology with definitions and often extensive examples, in

 both music and computing, covering the terms used in the book as

 well as many others.

 Production

 This book is one of the rapidly increasing number of those

 provided to the publisher in camera-ready form by the author; but

 while some books published in this way suffer from noticeably

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms



 Integral 151

 inferior production, Brinkman's book does not. The typography,

 musical score examples, and graphics (mostly diagrams of computer

 structures) are all of a quality indistinguishable from that of

 conventional book production. The typeface used for Pascal

 program code (other than keywords) is a little lighter than one

 might wish, but this is not a serious problem.

 Minor errors

 In the first edition of any technical book of this size (nearly

 1000 pages), it is not surprising that some errors escaped the notice

 of the editors. It is crucial to note that I am not speaking of errors

 in the program listings: although I have not tested the programs, I

 have little doubt that they are correct, since they were typeset

 directly from files on the computer on which they were executed.6

 Rather, I am referring to occasional typographical and other

 inadvertent errors, points of ambiguity, and minor errors of fact,

 which are few and harmless enough not to cause serious problems

 for students, and which will doubtless be corrected in subsequent

 printings. The frequency of the errors I found was much greater in

 the glossary than elsewhere; this is presumably due to the fact that

 definitions carry an implicit claim of absolute precision, and are

 thus inherently more likely to be flawed than ordinary exposition.

 To illustrate how minor the factual errors are, I will list a

 few examples from the main text:

 6For customary legal reasons, Brinkman includes no warranty of correct-
 ness for these programs, but this omission should not be taken as indicating
 lack of confidence.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms



 152 Integral

 Pg. 4, para. 3: In fact, floating-point numbers are usually

 represented by either 3 bytes for significant digits and 1 byte for the

 exponent, or 6 and 2 bytes, respectively.

 Pg. 27, para. 1: In fact, all are optional, including state-

 ments.

 Pg. 44, box: Pointers are not structured types, so the box

 caption could be misleading.

 Pg. 59, line 2: On most machines, the smallest integer that

 can be represented is not -maxint, but ~(maxint+ 1).

 Pg. 63, bottom: It isn't the compiler that wastes time

 determining that (expression = true) is true or false. Rather, the

 compiler wastes time (and space) generating code to compare the

 Boolean expression with the Boolean constant; then at run time,

 more time is wasted when the comparison is actually executed.

 Pg. 88, exercise 2: The value of e should be 2.718282

 rather than 2.718284.

 Pg. 168, note 2: An interpreter does not do "compiling and

 running. . . in one step"; it parses each computational primitive,

 looks it up in a table, substitutes values, and calls an execution

 routine. There are also program processors that do compiling and

 running in one step, but these are not interpreters.

 Pg. 441, para. 1: It would be more accurate to say "...

 but no standard version of Pascal allows a function to return a

 non-scalar type."

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms



 Integral 153

 Summary

 Brinkman's book would be worthwhile simply as an

 exemplary computer science text, albeit with an unorthdox choice

 of applications. Of course it is not only that, but an excellent

 introduction to programming tailored to the interests of music

 students. But it is yet more: It represents a major advance in

 software tools for researchers in music theory and musicology. The

 musical encoding conventions, data structures, and algorithms he

 presents are, in most cases, not merely implementations of others'

 work, but original research results. The DARMS interpreter, in

 particular, is the result of several years of intensive program

 development, and the sections of this book covering it would by

 themselves constitute a substantial research volume. The DARMS

 interpreter and its associated score processing algorithms, besides

 providing long-needed standard tools for computer-assisted music

 research, set a high standard for program quality in this or any field

 of study.

This content downloaded from 128.151.124.135 on Sat, 16 Mar 2019 00:21:40 UTC
All use subject to https://about.jstor.org/terms


	Contents
	[141]
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153

	Issue Table of Contents
	Intégral, Vol. 5 (1991), pp. 1-155
	Front Matter
	The Function of the Apparent Tonic at the Beginning of Development Sections [pp. 1-53]
	Thoughts on Poetry and Music, on Rhythms in Emily Dickinson's "The World Feels Dusty" and Aaron Copland's Setting of It [pp. 55-75]
	Beethoven's Interrupted Tetrachord and the Seventh Symphony [pp. 77-100]
	Reviews
	Review: untitled [pp. 101-123]
	Review: untitled [pp. 125-140]
	Review: untitled [pp. 141-153]

	Back Matter





